• Title/Summary/Keyword: solvent extraction reaction

Search Result 109, Processing Time 0.03 seconds

Solvent Extraction of Cobalt Chloride from Strong Hydrochloric Acid Solutions by Alamine336 (진한 염산용액에서 Alamine336에 의한 염화코발트의 용매추출)

  • Lee, Man-seung;Lee, Jin-Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Solvent extraction reaction of cobalt by Alamine336 from strong hydrochloric acid solution was identified by analyzing the solvent extraction data reported in the literature. Analysis of the data by graphical method revealed that Alamine336 took part in the solvent extraction reaction as a monomer in the concentration ranges, [Co(II)] : 0.0169 - 0.102 M, [Alamine336] ; 0.02- 1.75 M, and [HCl ] : 5 - 10 M. The following solvent extraction reaction and equilibrium constant was obtained from the experimental data by considering the activity coefficients of chemical species present in the aqueous phase. $Co^{2+}+2Cl^{-}+R_3NHCl_{org}=CoCl_3\;R_3NH_{org}$, $K_{ex}=2.21$ The distribution coefficients of cobalt predicted in this study agreed well with those reported in the literature.

Solvent Extraction of Cuprous and Cupric Chloride from Hydrochloric Acid Solutions by Alamine336 (염산용액에서 Alamine336에 의한 염화 제1, 2구리의 용매추출)

  • Lee, Man-seung;Lee, Jin-Young
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.297-303
    • /
    • 2009
  • Solvent extraction experiments of cupric and cuprous chloride with Alamine336 have been performed from HCl solution. In order to identify the solvent extraction reaction, distribution diagram of cupric and cuprous species with HCl concentration was obtained by considering complex formation reaction and the activity coefficient of solutes with Pitzer equation. Analysis of the solvent extraction data by graphical method together with the distribution diagram of copper indicated that solvent extraction reaction of copper with Alamine336 depends on HCl concentration. In strong HCl solution of 3 and 5 M, ${CuCl_4}^{2-}$ and ${CuCl_3}^{2-}$ took part in the solvent extraction reaction as Cu(II) and Cu(I), respectively. When HCl concentration was 1 M, ${CuCl_2}^-$ was extracted into the organic phase in the case of Cu(I) while adduct formation between $Cu^{2+}$ and Alamine336 was responsible for the solvent extraction reaction of Cu(II).

Solvent Extraction of Ni(II) from Strong Hydrochloric Acid Solution by Alamine336

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.113-116
    • /
    • 2011
  • Slope analysis method was applied to determine the stoichiometry of the solvent extraction reaction of Ni(II) by Alamine336 from strong HCl solution range from 1 to 10 M. Solvent extraction data was obtained from the literature. The effective equilibrium constant for the solvent extraction reaction was estimated by considering the ionic equilibria of $NiCl_2$ in the HCl solution. The measured distribution coefficients of Ni(II) agreed well with those calculated in this study. Our results suggest that further study on the measurement of the activities of nickel complexes at high HCl solution need to be done.

Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1526-1530
    • /
    • 2009
  • Solvent extraction reaction of Zn(II) by Alamine336 from strong HCl solution up to 10 M was identified by analyzing the data reported in the literature. The equilibrium constant of this reaction was estimated by considering the complex formation between zinc and chloride ion. The necessary thermodynamic parameters, such as equilibrium constant for the formation of complexes and the interaction parameters, were evaluated from the thermodynamic data reported in the literature. The following solvent extraction reaction and the equilibrium constant was obtained by considering the activity coefficients of solutes present in the aqueous phase with Bromley equation. $Zn^{2+}\;2Cl^{-}\;+\;R_3NHCl_{org}\;=\;ZnCl_3R_3NH_{org},\;K_{ex}\;=\;6.33\;{\times}\;10^2$ There was a good agreement between measured and calculated distribution coefficients of Zn(II).

Fundamental Studies for the Removal and Recovery of Silver from Waste Photo-Developing Solution by Solvent Extraction (사진폐액으로부터 용매추출에 의한 은의 제거 및 회수에 대한 기초연구)

  • Lee, Sun-Hwa;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.122-127
    • /
    • 2006
  • Fundamental studies were carried out for an effective removal and recovery of silver from waste photo-developing solution by solvent extraction. The organic solvents examined for silver-extraction were ALIQUAT 336, D2EHPA, KELEX 100, and TBP. ALIQUAT 336, which is an anionic exchanger, was found to be efficient for the extraction of silver and the reason for this was considered to be due to the chloride ion contained in its structure. The extent of silver extraction was examined to increase with the concentration of ALIQUAT 336 until it reached 0.6 M and no more extraction was observed above this concentration. The extraction of silver by ALIQUAT 336 was found to reach its pseudo-equilibrium within a few minutes after the reaction started and additional slight increase in silver extraction was observed until 30 minutes of reaction time. The observed differences in silver extraction for artificial and actual waste solutions were considered to be based upon the different ionic form of silver-containing species in these solutions.

Recovery of Cobalt from the Wastewater produced during Malonate Process by Solvent Extraction (말로네이트 제조 공정 폐수로부터 코발트 회수: 용매추출법 적용)

  • 문영환
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 1997
  • The solvent extraction method was applied on the wastewater produced during malonate(malonic acid esters) process to recover cobalt. DEHPA and PC88A were used as organic solvent From separation funnel experiment(batch experiment), the effects of vari- ous parameters (pH, cobalt concentration, reaction rate, and stripping temperature) on solvent extraction were examined and these data were used to derive equilibrium curve. A mixer-settler experiment (continuous experiment) of bench scale was also carried out for the plant construction and a Mccabe-Thiele diagram was obtained. The results of these experiments indicate that cobalt is recoverable above 99 oyo and that its purity as cobalt sulfate Is higher than 99.9 wt%.

  • PDF

Separation of Gold and Silver from Diverse Solutions by Solvent Extraction (다양한 용액으로부터 용매추출에 의한 금과 은의 분리)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.3-11
    • /
    • 2017
  • Solvent extraction is an important process to recover pure gold and silver from various leaching solutions. The present work reviews the aqueous chemistry and solvent extraction separation of gold (I, III) and silver (I) from several leaching systems such as cyanide, thiocyanate, thiosulfate, thiourea and chloride medium. The extraction and separation behavior of gold (I, III) and silver (I) by various single and mixtures was compared on the basis of extraction reaction and the selectivity from these mediums. The chloride medium is recommended for the separation of gold and silver by solvent extraction in terms of extraction and stripping efficiency.

Construction and Utilization of McCabe-Thiele Diagram for the Solvent Extraction (용매추출에서 McCabe-Thiele도의 작성 및 이용)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • In solvent extraction, extraction isotherm represents the relation between the equilibrium concentration of metal in the aqueous and organic phase. McCabe-Thiele diagram on which extraction isotherm and operating line are constructed provides valuable information on the mass transfer operation. When the equilibrium constant of a solvent extraction reaction is known, the calculation method to obtain extraction isotherm was introduced. Kresmer equation by which the number of extraction stages can be calculated when the distribution coefficient is constant was introduced.

Optimization of biodiesel production via methyl acetate reaction from cerbera odollam

  • Dhillon, Sandip Singh;Tan, Kok Tat
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.325-337
    • /
    • 2016
  • Cerbera Odollam (sea mango) is a proven promising feedstock for the production of biodiesel due to its high oil content. Fatty acid methyl esters (FAME) were produced as the final reaction product in the transesterification reflux condensation reaction of sea mango oil and methyl acetate (MA). Potassium methoxide was used as catalyst to study its reacting potential as a homogeneous base catalyst. The initial part of this project studied the optimum conditions to extract crude sea mango oil. It was found that the content of sea mango sea mango oil was 55%. This optimum amount was obtained by using 18 g of grinded sea mango seeds in 250 ml hexane. The extraction was carried out for 24 hours using solvent extraction method. Response surface methodology (RSM) was employed to determine the optimum conditions of the reaction. The three manipulated variables in this reaction were the reaction time, oil to solvent molar ratio, and catalyst wt%. The optimum condition for this reaction determined was 5 hours reaction time, 0.28 wt% of catalyst and 1:35 mol/mol of oil: solvent molar ratio. A series of test were conducted on the final FAME product of this study, namely the FTIR test, GC-FID, calorimeter bomb and viscometer test.

Effect of Heat Treatment, Ethanol Content, Extraction Time and Ratio of Solvent on the Efficiency of Polyphenol Extraction from Licorice Root (Glycyrrhizauralensis) (감초폴리페놀 추출효율에 있어 열처리, 에탄올 농도, 추출시간 및 용매비율이 미치는 영향 탐색)

  • Chae, Jung-Il;Ryu, Kyeong-Seon;Seo, Kang-Seok;Kim, Kyung-Hoon;Oh, Young-Kyoon;Jang, Sun-Sik;Choi, Chang-Weon;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.399-409
    • /
    • 2012
  • Effects of pretreatment and extraction conditions on total polyphenol yield from licorice root were investigated using statistical method. For pretreatment, heat treatment at $121^{\circ}C$ for 10 min was applied. Licorice root content in solvent (10, 20, and 30%) ethanol concentration (20, 40, and 60%) and reaction time (1, 2, and 3 h) were used as variables for extraction conditions. Two experiments, with heat treated and no treated licorice, were prepared with same experimental design. Box behnken design was employed and produced a total of 15 trials. Total polyphenol yield from licorice root was not affected by heat treatment. Among variables, licorice content in solvent showed most significant effect regardless of other variables (p<0.05). Finally, optimum conditions for the extraction of total polyphenol from licorice root was detected as following: 10% of licorice in solvent, 52% ethanol as solvent, 2 h of reaction time and non-heat treatment and the extraction yield from optimized condition was 17.6 mg/g licorice root.