Browse > Article

Solvent Extraction of Cuprous and Cupric Chloride from Hydrochloric Acid Solutions by Alamine336  

Lee, Man-seung (Department of Advanced Materials Science & Engineering, Mokpo National University)
Lee, Jin-Young (Metal Recovery Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Journal of Metals and Materials / v.47, no.5, 2009 , pp. 297-303 More about this Journal
Abstract
Solvent extraction experiments of cupric and cuprous chloride with Alamine336 have been performed from HCl solution. In order to identify the solvent extraction reaction, distribution diagram of cupric and cuprous species with HCl concentration was obtained by considering complex formation reaction and the activity coefficient of solutes with Pitzer equation. Analysis of the solvent extraction data by graphical method together with the distribution diagram of copper indicated that solvent extraction reaction of copper with Alamine336 depends on HCl concentration. In strong HCl solution of 3 and 5 M, ${CuCl_4}^{2-}$ and ${CuCl_3}^{2-}$ took part in the solvent extraction reaction as Cu(II) and Cu(I), respectively. When HCl concentration was 1 M, ${CuCl_2}^-$ was extracted into the organic phase in the case of Cu(I) while adduct formation between $Cu^{2+}$ and Alamine336 was responsible for the solvent extraction reaction of Cu(II).
Keywords
$CuCl_2$; CuCl; HCl; Alamine336; distribution diagram;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, pp. 428-430, New York (1986)
2 M. S. Lee and M. J. Nicol, J. Kor. Inst. Met. & Mater. 46, 25 (2008)
3 J. Shibata, K. Yamada, and S. Matsumoto, Solvent extraction research and development 5, 25 (1998)
4 M. Harada, M. Araki, A. H. Bokhari, W. Eguchi, and Y. Yamada, The Chemical Engineering Journal 26, 135 (1983)   DOI   ScienceOn
5 S. Stenström, Hydrometallurgy 18, 1 (1987)   DOI   ScienceOn
6 J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, p. 503-505, New York (1986)
7 M. Lundstrom, J. Aromaa, O. Forsen, O. Hyvarinen, and M. H. Barker, Hydrometallurgy 77, 89 (2005)   DOI   ScienceOn
8 H. H. Haung, Journal of Solution Chemistry 18, 1069 (1989)   DOI
9 A. R. Burkin, Chemical hydrometallurgy Theory and principles, Imperial College Press, p. 145, Singapore (2001)
10 M. S. Lee and J. Y. Lee, J. Kor. Inst. & Mater. 46, 227 (2008)
11 A. Borowiak-Resrerna, Solvent extraction and ion exchange 17, 133 (1999)   DOI   ScienceOn
12 J. Rydberg, M. Cox, C. Musikas, and G. R. Choppin, Solvent Extraction Principles and Practice, Marcel Dekker, Inc., p. 156-159, New York (2004)
13 N. A. Yakubu, Hydrometallurgy 18, 93 (1987)   DOI   ScienceOn
14 T. Sato and K. Sato, Hydrometallurgy 25, 281 (1990)   DOI   ScienceOn
15 K. S. Pitzer, Activity coefficients in electrolyte solutions, CRC Press, p. 401, London (1991)
16 W. Zabroska, M. Leszko, and A. Krzymowska-Hachu l/ a, Talanta 36, 1295 (1989)   DOI   ScienceOn
17 C. Caravaca, F. J. Alguacil, and A. Sastre, Hydrometallurgy 40, 263 (1996)   DOI   ScienceOn
18 W. Frust, S. Hachimi, and H. Renon, Journal of solution chemistry 17, 10 (1988)
19 G. Huifa, S. Jinglan, and M. A. Hughes, Hydrometallurgy 25, 293 (1990)   DOI   ScienceOn
20 C. K. Yun, Hydrometallurgy 12, 289 (1984)   DOI   ScienceOn
21 T. Sato, M. Ito, T. Sakamoto, and R. Otsuka, Hydrometallurgy 18, 105 (1987)   DOI   ScienceOn