Solvent Extraction of Cuprous and Cupric Chloride from Hydrochloric Acid Solutions by Alamine336

염산용액에서 Alamine336에 의한 염화 제1, 2구리의 용매추출

  • Lee, Man-seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Lee, Jin-Young (Metal Recovery Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 이진영 (한국지질자원연구원 광물자원연구본부 금속회수연구실)
  • Received : 2009.02.03
  • Published : 2009.05.25

Abstract

Solvent extraction experiments of cupric and cuprous chloride with Alamine336 have been performed from HCl solution. In order to identify the solvent extraction reaction, distribution diagram of cupric and cuprous species with HCl concentration was obtained by considering complex formation reaction and the activity coefficient of solutes with Pitzer equation. Analysis of the solvent extraction data by graphical method together with the distribution diagram of copper indicated that solvent extraction reaction of copper with Alamine336 depends on HCl concentration. In strong HCl solution of 3 and 5 M, ${CuCl_4}^{2-}$ and ${CuCl_3}^{2-}$ took part in the solvent extraction reaction as Cu(II) and Cu(I), respectively. When HCl concentration was 1 M, ${CuCl_2}^-$ was extracted into the organic phase in the case of Cu(I) while adduct formation between $Cu^{2+}$ and Alamine336 was responsible for the solvent extraction reaction of Cu(II).

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, pp. 428-430, New York (1986)
  2. W. Frust, S. Hachimi, and H. Renon, Journal of solution chemistry 17, 10 (1988)
  3. H. H. Haung, Journal of Solution Chemistry 18, 1069 (1989) https://doi.org/10.1007/BF00647264
  4. K. S. Pitzer, Activity coefficients in electrolyte solutions, CRC Press, p. 401, London (1991)
  5. M. Lundstrom, J. Aromaa, O. Forsen, O. Hyvarinen, and M. H. Barker, Hydrometallurgy 77, 89 (2005) https://doi.org/10.1016/j.hydromet.2004.10.013
  6. M. S. Lee and M. J. Nicol, J. Kor. Inst. Met. & Mater. 46, 25 (2008)
  7. T. Sato, M. Ito, T. Sakamoto, and R. Otsuka, Hydrometallurgy 18, 105 (1987) https://doi.org/10.1016/0304-386X(87)90020-X
  8. W. Zabroska, M. Leszko, and A. Krzymowska-Hachu l/ a, Talanta 36, 1295 (1989) https://doi.org/10.1016/0039-9140(89)80066-9
  9. J. Shibata, K. Yamada, and S. Matsumoto, Solvent extraction research and development 5, 25 (1998)
  10. A. Borowiak-Resrerna, Solvent extraction and ion exchange 17, 133 (1999) https://doi.org/10.1080/07360299908934604
  11. J. Rydberg, M. Cox, C. Musikas, and G. R. Choppin, Solvent Extraction Principles and Practice, Marcel Dekker, Inc., p. 156-159, New York (2004)
  12. M. Harada, M. Araki, A. H. Bokhari, W. Eguchi, and Y. Yamada, The Chemical Engineering Journal 26, 135 (1983) https://doi.org/10.1016/0300-9467(83)80007-0
  13. C. K. Yun, Hydrometallurgy 12, 289 (1984) https://doi.org/10.1016/0304-386X(84)90002-1
  14. S. Stenström, Hydrometallurgy 18, 1 (1987) https://doi.org/10.1016/0304-386X(87)90013-2
  15. N. A. Yakubu, Hydrometallurgy 18, 93 (1987) https://doi.org/10.1016/0304-386X(87)90019-3
  16. T. Sato and K. Sato, Hydrometallurgy 25, 281 (1990) https://doi.org/10.1016/0304-386X(90)90044-3
  17. G. Huifa, S. Jinglan, and M. A. Hughes, Hydrometallurgy 25, 293 (1990) https://doi.org/10.1016/0304-386X(90)90045-4
  18. C. Caravaca, F. J. Alguacil, and A. Sastre, Hydrometallurgy 40, 263 (1996) https://doi.org/10.1016/0304-386X(95)00013-7
  19. M. S. Lee and J. Y. Lee, J. Kor. Inst. & Mater. 46, 227 (2008)
  20. A. R. Burkin, Chemical hydrometallurgy Theory and principles, Imperial College Press, p. 145, Singapore (2001)
  21. J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, p. 503-505, New York (1986)