• Title/Summary/Keyword: solution-grown crystals

Search Result 85, Processing Time 0.018 seconds

Analysis of surface defect in RE : YAG (RE = Nd3+, Er3+, Yb3+) single crystal using chemical polishing and etching (화학적 polishing 및 etching을 통한 RE : YAG (RE = Nd3+, Er3+, Yb3+) 단결정의 표면 결함 분석)

  • Shim, Jang Bo;Kang, Jin Ki;Lee, Young Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.131-134
    • /
    • 2016
  • The conditions for chemical polishing and etching technique were investigated to reveal surface defects in RE : YAG ($RE=Nd^{3+},\;Er^{3+},\;Yb^{3+}$) single crystals grown by Czochralski method. The optimal condition for chemical polishing was in 85 % $H_3PO_4$ solution at $330^{\circ}C$ for 30 minutes with a specimen fixed in the vertical direction. In addition, the optimal condition for chemical etching was in 85 % $H_3PO_4$ solution at $260^{\circ}C$ for 1 hour, and $70{\sim}80{\mu}m$ sized triangular etch pits were observed on (111) face. As a result of defect density analysis, $1.9{\times}10^3/cm^2$ for Nd(1 %) : YAG, $4.3{\times}10^2/cm^2$ for Er(7.3 %) : YAG, and $5.1{\times}10^2/cm^2$ for Yb(15 %) : YAG were measured.

New fabrication of CIGS crystals growth by a HVT method (새로운 HVT 성장방법을 이용한 CIGS 결정성장)

  • Lee, Gang-Seok;Jeon, Hun-Soo;Lee, Ah-Reum;Jung, Se-Gyo;Bae, Seon-Min;Jo, Dong-Wan;Ok, Jin-Eun;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Bae, Jong-Seong;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2010
  • The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.

ESR Study of Paramagnetic Defects of the ${\gamma}$-irradiated Potassium Sulfate Single Crystal (${\gamma}$-선에 조사된 황산칼륨 단결정의 상자성 결함에 관한 전자스핀공명 연구)

  • Yo Chul Hyun;Chung Won Yang;Jong In Hong;Eun Ok Kim;Jung Sung Yang
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.367-375
    • /
    • 1981
  • Single crystals of Potassium Sulfate ($K_2SO_4$) have been grown from the saturated solution by the evaporation method at the optimum conditions. Radiation damages in the crystal by ${\gamma}$-irradiation of about $12{\times}10^6$ Roentgen have given rise to paramagnetic centers or paramagnetic defects. Electron spin resonance (ESR) spectra of the centers are obtained with the X-band EPR spectrometer at room temperature. The ESR peaks of the paramagnetic species are found to be anisotropic but the peak of $SO_3-$ radical is an isotropic of Gaussian shape at g = 2.0036. A number of ESR spectra of the crystal for angular variation of the anisotropic peaks are recorded at various orientations of rotation about a, b and c crystallographic axes respectively. The g-values are calculated from the line position between anisotropic peaks and the isotropic one and then principal g-values and its direction cosines of the species are obtained by diagonalization of 9 matrix elements of the corresponding g-values. All the paramagnetic defects are identified by the characteristic principal g-values and its direction cosines.

  • PDF

ESR Study on Paramagnetic Defects of the ${\gamma}$-Irradiated Sodium Thiosulfate Single Crystal (${\gamma}$-선에 조사된 티오황산나트륨 단결정의 상자성 결함에 관한 전자스핀공명 연구)

  • Jung Sung Yang
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.244-254
    • /
    • 1983
  • Single crystals of sodium thiosulfate $(Na_2S_2O_3) have been grown from the saturated solution by the evaporation method at the optimum condition. Radiation damages in the crystal by ${\gamma}$-irradiation of $20{\times}10^6$ Rontgen have given rise to paramagnetic centers. The anisotropic spectra of each paramagnetic species have been obtained with the X-band EPR spectrometer at room temperature. When an isotropic D.P.P.H. at g value of 2.0036 is based on. ESR Spectra of the single crystal are recorded for each rotation about the perpendicular a, b and c axis with intervals of $10^{\circ}$ from $0^{\circ}$to $180^{\circ}$ in order to find out the properties of the crystal for anglar variation of the anisotropic peaks. The g values are calculated from the line position between the anisotropic peaks and the isotropic peaks of D.P.P.H. and then principal g values and their direction cosines of the species is obtained by the diagonalization of 9 matrix elements of the corresponding g values. From the analysis of the characteristic principal g values and direction cosines for ${\gamma}$-irradiated $Na_2S_2O_3$ crystal, anisotropic peaks corresponding to $SO_2^+, SO_2^- $are identified and the existences of unidentified and unstable paramagnetic defects are verified.

  • PDF

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF