DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 27, No. 4, 1983 Printed in the Republic of Korea

γ-선에 조사된 티오황산나트륨 단결정의 상자성 결함에 관한 전자스핀공명 연구

梁鼎成

동국대학교 대학원 화학과 (1983. 1, 19 접수)

ESR Study on Paramagnetic Defects of the γ-Irradiated Sodium Thiosulfate Single Crystal

Jung Sung Yang

Department of Chemistry, Graduate School, Dongguk University, Seoul 100, Korea (Received January 19, 1983)

요 약. 최적 조건에서 티오황산나트륨 (Na₂S₂O₃) 포화 수용액으로부터 단결정을 생성시킨다. 이 단결정에 약 20×10⁶ 렌트겐의 7-선을 조사시키면 그 결정 내부에 상자성 중심 또는 상자성 결함들 이 생성되어 진다. 8 값이 2.0036인 동방성 D.P.P.H 피크를 기준으로 하여 무동방성인 각 상자성 종들의 스팩트림을 상온에서 X-band 전자 스핀 공명 분석기로 얻었다. 무동방성 피이크들의 각도의 존성을 나타내기 위하여 서로 직교하는 *a*,*b*,*c* 결정축으로 0°에서 180°까지 10° 간격으로 회전시키면 서 ESR 스펙트럼을 기록하였다. 무동방성 피이크들과 동방성 D.P.P.H 피이크간의 선위치 거리로 부터 *g* 값들을 계산하고 각 상자성종들의 *g* 값의 9 matrix 원소들을 얻어 대각화(diagonalization) 시켜 특성 주 *g* 값(principal *g* value)과 방향여현(direction cosine)을 얻었다. 이 특성 주 *g* 값과 방향여현으로 *r*-선에 조사된 Na₂S₂O₃ 단결정내의 상자성 결함을 분석한 결과 이 단결정내에 무동방 성 피이크에 해당하는 SO₂^{*}, SO₂⁻ 및 미확인된 불안정한 상자성 중심 등이 존재함을 확인하였다.

ABSTRACT. Single crystals of sodium thiosulfate $(Na_2S_2O_3)$ have been grown from the saturated solution by the evaporation method at the optimum condition. Radiation damages in the crystal by γ -irradiation of 20×10^6 Röntgen have given rise to paramagnetic centers. The anisotropic spectra of each paramagnetic species have been obtained with the X-band EPR spectrometer at room temperature. When an isotropic D.P.P.H. at g value of 2.0036 is based on. ESR Spectra of the single crystal are recorded for each rotation about the perpendicular a, b and c axis with intervals of 10° from 0° to 180° in order to find out the properties of the crystal for angular variation of the anisotropic peaks. The g values are calculated from the line position between the anisotropic peaks and the isotropic peak of D.P.P.H. and then principal g values and their direc tion cosines of the species is obtained by the diagonalization of 9 matrix elements of the corresponding g values. From the analysis of the characteristic principal g values and direction cosines for γ -irradiated Na₂S₂O₃ crystal, anisotropic peaks corresponding to SO₂⁺, SO₂⁻ are identified and the existences of unidentified and unstable paramagnetic defects are verified.

^{*} Present Adress: Department of Chemistry, Kyung nam University, Masan 610, Korea

서 론

최초에 ESR 실험은 1944년 Zavoisky¹가 CuCl₂· 2H₂O에서 상자성 흡수 피크 (paramagnetic absorption peak)를 얻은바 있는데 이때 133 MHz 의 주파수에 대해 47.6 G의 공명자장값을 보이며 g 값은 약 2 임을 알게 되었다.

방사선에 조사된 알카리 황산염2~6, 황산암모 늄' 및 산성 황산암모늄⁸ 등의 ESR 연구가 수행 되어 이들 물질내에 SO4⁻, SO3⁻ 및 O3⁻ 등의 기가 존재함을 밝힌바 있다. 그러나 티오황산나 트륨 단결정에 관한 ESR 연구는 불과 몇가지 밖 에 없다. 그 이유는 이 단결정은 풍해성이 있 어 쉽게 분말로 변하기 때문이며 또 단결정 생 성이 쉽게 되지 않는데에도 원인이 있는것 같다. Golding과 DeLisle⁹은 X-선에 조사된 티오황산 나트륨 단결정에 관한 ESR 연구를 수행한바 있 으며 Goto와 Matumura¹⁰ 그리고 Eager와 Mahadevapp¹¹도 각기 7-선에 조사된 티오황산나트 륨 단결정의 ESR 연구를 수행하였었다. 그런데 이들이 얻은 ESR Spectrum의 분해능도 좋지 않 았으며 각도 의존성에 따른 상자 성종들의 Peak 분석도 명확치가 못했었다.

본 연구는 최적조건 (optimum condition)에서 Na₂S₂O₃·5H₂O 포화용액으로부터 Na₂S₂O₃ 단결 정을 생성시키고 이 단결정에 20×10⁶ Röntgen 의 7-선을 조사시켜 spin 농도를 중가시키고 실 온에서 작은 결정이지만 성공적으로 실험을 수행 하여 분해능이 높은 ESR spectrum 을 얻었다. 그리고 이 spectrum 들의 자도 의존성을 분석하 여 각 상자성종들을 분리하고 이들의 주 g 값과 방향여현을 구하였다. 주 g 값과 방향여현은 각 상자성 종들에 대응하는 특정치를 가지므로 다 른 여러 학자들의 연구에서 나타난 값과 비교 겸 토함으로써 Na₂S₂O₃ 단결정내에 존재하는 상자 성 결함들의 본질을 분석 확인하였다.

실 험

단결정 생성 및 확인

Merck 제 초순도 티오황산나트륨을 3차 중류 수에 용해시켜 포화용액을 만들었다. 이 용액을 여러개의 샤알레에 나누어 넣은 후 냉각 중발법 으로 티오황산나트륨의 단결정을 얻었다. 이 때 최적조건은 단결정 생성시 용기 부근에 동요가 없어야 하고 실온을 20°C로 고정시킨 후 물의 중발이 용이하도록 공기 유통이 잘되게 하며 이 물질이 오염되지 않도록 격리해야 하는 것이다. 생성된 단결정은 편광 현미경(polarized microscope: (Leitz, Wetzlar, 700422 German)으로 관찰하여 회전각 2° 범위에서 소광현상이 결정 전체에 명확하게 나타나므로 단결정임은 확인하 였고 소광현상이 뚜렷한 부분만을 날카로운 메 스로 절단하여 본 실험의 시료를 택하였다.

실험 방법

시료 단결정 (약 2×4×1.6 mm)에 20×10⁶ Röntgen의 7-선을 조사시키면 각 상자성종 중심 (paramagnetic center)을 갖는 radical 들이 형성 되어 진다. 이때 시료의 탈수를 방지하기 위하 여 단결정을 투명한 접착 테이프로 쌓아서 7-선 을 조사시켜야 한다. 조사된 단결정은 조사전에 무색 투명하던 것이 갈색내지 오렌지색으로 변 하는 것을 볼 수 있었다.

조사된 단결정은 *r*-선에 의해 자유기들이 형 성되여 지고 이 때문에 ESR peak들이 나타날 것 으로 기대된다.

방사선을 포인 단결정을 각도기 (goniometer) 의 석영막대 (quartz rod)에 고정시켜 (mounting) cavity에 고정시킨다. 이때 D. P. P. H (2.2'~ diphenyl-1-picrylhydrazyl)를 사용할 때는 double cavity 를 사용해야 한다.

상온에서 Varian E-line EPR spectrometer(Xband)로 ESR peak 를 얻었으며 이때 standard peak는 전 실험과정을 통하여 D.P.P.H를 사용 하였다. D.P.P.H 피크는 3,406G의 자장에서 나 타났다. 이때 주의점은 사용한 회전봉이나 회전 봉에 시료를 고정시키는 접착제가 ESR peak 에 영향을 주지 않는 것이어야 한다. ESR peak 를 얻을 때는 ESR 분광 분석기의 지침서에 의해 최적 조건을 찾았으며 본 실험은 다음과 같은 최적조건에 대응하는 Parameter를 사용하여 ESR Spectrum 을 얻었다.

Scan Range : ± 200 Gauss

梁 鼎 成

Fig. 1. Saturation behavior of the SO_2 -peak at room temperature: saturation effects are noticed for microwave powers in excess of 8.0mW.

Field Set : 3394 Gauss

Time Constant : 0.064 Sec.

Scan Time: 2 min.

Modulation Amplitude : 0.4 Gauss

Modulation Frequency : 100KHz

Receiver Gain : 5×10^2

Microwave Frequency : 9.485 GHz

Microwave Power: 20.0mW(2.0dB)

Temperature : Room Temp.

등방성 피크(isotropic peak)인 D.P.P.H를 기준 Peak로 하고 그 외의 무등방성 피크(anisotropic peak)들의 자장 방향 의존성을 보는것이 무엇보 다 중요하므로 시료의 서로 수직인 3개의 회전 축(rotation axis) *a*, *b*, *c*에 대하여 시료를 0°에 서 180°까지 10° 간격으로 각도기를 회전시키면 서 얻은 peak들은 ESR chart에 기록하였다. 이 때 유의점은 회전축을 바꿀때 정확하게 수직관 계를 유지시키는 기술어 필요하다.

실 험 결 과

SO2- Peak의 포화효과, Fig. 1에서 보는 바와

같이 무둥방성 SO₂" peak의 포화 효과를 보기 위하여 1mW에서 40mW까지 microwave power 를 증가시키면서(*Fig.* 1에서는 1mW~20mW만 표시) 포화 효과를 관찰하였다. 이때 8mW 이상 에서 포화효과가 나타남을 알 수 있었다.

Scan Range: 40 Gauss, Receiver Gain: 3.2× 10² 만 제외하고 실험난에 밝힌 최적 조건과 동 일하게 파라미터를 잡고 마이크로 파력의 변화 에 따른 peak의 강도변화를 기록하였다.

포화효과가 나타난 후에도 마이크로 과력의 증 가에 따라 그 peak 의 강도가 감소 또는 소멸되 는 현상이 일어나지 않으므로 20 mW 이상의 높 은 마이크로 과력을 사용해도 무방함을 알 수 있 다.

Spectrum 의 실예와 Peak 의 각도 의존성. *Fig.* 2는 7-선에 조사된 Na₂S₂O₃ 단결정내의 상자성 결합들의 spectrum 들이다. 그립에서는 표시는 안했으나 오른쪽 끝 3,406G 부근에 D.P., P.H가 있고 미확인된 상자성종들은 원쪽부터 *A, B, C*(또는 *A*₁, *A*₂, *B*₁, *B*₂, *C*₁, *C*₂) 등으 로 표시하고 아주 강도가 낮은 상자성종들은 D

(c) 60°, (d) 90°, (e) 120°, (f) 150° and (g) 180°.

A, B, C peak 들은 모두 무등방성이고 D peak

는 등방성이었다. @축을 회전축으로 하고 b-c

평면에 대하여 6 축과 자장과의 각도를 각각 0,

자장은 원편에서 오른편으로 갈수록 ~ 특 scaning 시켜 주었다. 그린데 K₂SO4 ' 서는 자장의 방향이나 회전축이 바뀌어 자성종에 대응하는 peak 가 갈라지는 호 으나 본 시료에서는 A, B, C 3peaks⁷ 해 회전시킬 때 A1, A2, B1, B2, C1, 4 지는 현상을 보였다. Fig.3은 b축을

247

30, 60, 90, 120, 150, 180°로 회전시킬 때 각 종 peak들의 선위치가 변하는 것을 보기 위하여 30° 간격으로 spectrum 을 예시하였다.

로 표시하였다.

梁鼎成

Fig. 3. ESR spectra of the γ -irradiated sodium thiosulfate crystal at room temperature for the orientation of a-c plane $/\!/$ H and $\widehat{aH}=0^\circ$.

Fig. 4. ESR spectra of the γ -irradiated sodium thiosulfate crystal at room tempersture for the orientation of a-b pland //H and $\widehat{aH}=0^{\circ}$.

로 하고 a-c 평면은 자장과 평행하게 했을때 자 장과 a 축과의 각도가 0°에서의 peak 인데 2개 로 갈라졌던 peak 둘이 A, B, C 등으로 다셔 하 나로 되고 A, C peak 는 overlapping 된 것을 보 여주고 있으며 또 D peak 가 낮은 자장에서 나 타남을 보여준 것이다.

Fig. 4는 c 축을 회전축으로 하고 a-b 평면 과 자장의 방향이 평행한 즉 자장과 축과의 각도 가 0°인 peak인데 이때 overlapping 됐던 A, C 가 다시 갈라짐을 보여준 peak 이다.

Fig. 5는 a 축을 회전축으로 하고 a-c 평면 과 자장을 수직으로 한후 b 축과 자장간의 이루 는 각도를 변화시키면서 각 상자성종들의 선위 치가 변해가는 각도 의존성을 보여준 그림이며 이때 오른쪽 긴 선은 등방성 D.P.P.H 를 표시

Fig. 5. Angular variation of the ESR line positions of the paramagnetic species relative to DPPH for rotation about a-axis starting from b//H and a-c plane \perp H.

한 것이다. 여기서 선 위치의 주기성을 보아 각 상자성종들을 분별할 수 있었다. 같은 방법으로 b축, c축을 회전축으로 할때 선위치들의 각도 의존성은 ESR spectrum으로 부터 옮겨 그린 것 이 Fig.6, Fig. 7에 표시했다.

한편, g²의 각도의존성을 사용하면 각상자성 종들의 9 matrix element를 얻을 수 있는데 Fig. 8은 a 축을 회전축으로 하고 각도변화시 g²을 θ (θ: 자장과 결정면과 이루는 각도)에 대하여 도시한 것이다. 같은 방법으로 b 축과 c 축을 각각 회전축으로 할때 g²의 각도의존성을 도시 한 것이 Fig. 9, Fig. 10에 명시하였다.

g 값과 주 g 값. Figs. 5, 6, 7 에서 D.P.P.H 와 각 성자상종들에 대응하는 peak의 선 위치 간 거리를 사용하여 선위치의 자장을 계산하고 이들을 g 값으로 환산하였다. a 축을 회전축으 로 하였을 때 각도 변화에 따른 g 값은 Table 1 에 수록하였고 같은 방법으로 b 축과 c 축의 경

Fig. 6. Angular variation of the ESR line positions of the paramagnetic species relative to DPPH for rotation about b-axis starting from a//H and b-c plane \perp H.

Fig. 8. Plot of g^2 vs. Θ for rotation about a-axis.

우 g 값들을 Table 2, Table 3에 수록하였다.

Figs. 8, 9, 10의 g² 값을 θ에 대하여 도시한 곡선에서 0, 45, 90, 135°인 경우의 g² 값을 대 응 관계식¹²에 대입하여 9 matrix elements 를 구 하였다.

Fig. 7. Angular variation of the ESR line positions of the paramagnetic species relative to DPPH for rotation about c-axis starting from a//H and c-b plane \perp H.

Fig. 9. Plot of g^2 vs. Θ for rotation about b-axis.

- $g^2 = g^2_{xx} \cos^2\theta + 2g^2_{xy} \sin\theta \cdot \cos\theta + g^2_{yy} \sin^2\theta \qquad (1)$
- $g^2 = g^2_{yy} \cos^2\theta + 2g^2_{yz} \sin\theta \cos\theta + g^2_{zz} \sin^2\theta \qquad (2)$
- $g^2 = g^2_{xx} \cos^2\theta + 2g^2_{xx} \sin \cos\theta + g^2_{xx} \sin^2\theta \qquad (3)$

梁鼎成

3×3 matrix element 를 구할수도 있다.

$$g^2 = \alpha + \beta \cos^2 \theta + \gamma \sin^2 \theta \qquad (4)$$

여기서 θ는 회전축에 수직인 결정축과 자장간에 이루는 각도이고 α, β, γ는 최소 자승과라미터 이다. 실제로 한 면에서 g값이 최대치 g+ 값과 최소치 g- 및 최대 g값을 갖는 각 θ+ 로부터 다 음 식과 같이 α, β, γ를 얻을 수 있다.

Fig. 10. Plot of g^2 vs. Θ for rotation about c-axis.

$$2\alpha = g_{+}^{2} + g_{-}^{2}$$

$$2\beta = (g_{+}^{2} - g_{-}^{2}) \cos 2\theta + \qquad (5)$$

$$2\gamma = (g_{+}^{2} - g_{-}^{2}) \sin 2\theta_{+}$$

이때 *8* 값이 9 matrix element 는 다음과 같이 세워진다.

$lpha_3+eta_3\ lpha_2-eta_2$	7 3	72	
73	$\left egin{array}{c} lpha_3 - eta_3\ lpha_1 - eta_1 \end{array} ight $	71	(6)
72	71	$a_2+eta_2 \ a_1-eta_2$	

위 두 방법으로 구한 9 matrix element는 동일한 결과가 된다. 이와 같이 구한 각 성자성종들의 9 matrix elements 를 computer program에 의하 여 대각화시켜 얻은 주 g 값 gza, gyy, gzz와 방 향여현을 얻어 Table 4 에 수록하였다.

고 찰

Fig. 1은 고분해능 peak 들을 얻기 위하여 높 은 마이크로 파력의 사용여부를 결정하는 실험

Table 1. Angular variation of g-values of the paramangnetic species of the γ -irradiated sodium thiosulfate single crystal for rotation about a-axis from b//H and a-c plane \perp H.

Angle(0)	8A1	8A2	g _{B1}	g _{B1}	gc,	SC:
0	2.0311	2.0311	2.0179	2.0179	2.0096	2.0096
10	2.0317	2.0284	2. 0242	2.0161	2.0110	2.0075
20	2.0302	2.0260	2.0275	2.0155	2.0114	2.0067
30	2.0278	2.0227	2.0305	2.0161	2.0117	2.0061
40	2. 0248	2.0191	2.0326	2.0191	2.0114	2.0058
50	2. 0281	2.0164	2.0335	2.0218	2.0108	2.0061
60	2.0188	2.0144	2.0339	2.0245	2.0099	2.0064
70	2.0161	2.0129	2.0330	2-0272	2.0087	2.0072
80	2.0132	2.0135	2.0305	2.0302	2.0078	2.0081
90	2.0123	2.0144	2.0278	2.0323	2.0069	2.0090
100	2.0132	2.0170	2.0242	2.0330	2.0064	2.0093
110	2.0152	2.0197	2.0212	2.0333	2.0055	2.0096
120	2.0176	2.0227	2.0176	2.0320	2.0055	2.0096
130	2.0206	2.0257	2.0149	2.0302	2.0052	2.0105
140	2. 0233	2.0275	2.0140	2.0275	2.0055	2.0105
150	2.0257	2.0290	2.0140	2.0245	2.0058	2.0102
160	2.0281	2.0302	2.0146	2.0215	2.0064	2.0099
170	2.0302	2.0308	2.0158	2.0191	2.0072	2.0093
180	2.0314	2.0314	2.0176	2.0176	2.0087	2.0087

Table 2. Angular variation of g-values of the paramagnetic species of the γ -irradiated sodium thiosulfate single crystal for rotation about b-axis from a//H and b-c plane \perp H.

Table 3.	Angular variation of g-values of the para-
magnetic s	pecies of the γ -irradiated sodium thiosulfate
single crys	stal for rotation about c-axis from c//H and
c-b plane	⊥ H.

Angle (0)	8A.	g _B	gc
0	2.0087	2.0132	2.0084
10	2.0093	2.0164	2.0078
20	2.0102	2. 0191	2.0075
30	2.0105	2.0227	2.0069
40	2.0117	2.0257	2.0069
50	2.0126	2.0278	2.0067
60	2.0129	2.0290	2.0064
70	2.0123	2.0290	2.0064
80	2.0120	2.0278	2.0064
90	2.0111	2. 0257	2.0064
100	2.0102	2.0227	2.0061
110	2.0096	2.0188	2.0061
120	2.0084	2.0149	2.0061
130	2.0081	2.0120	2.0064
140	2.0075	2.0108	2,0064
150	2.0072	2.0108	2.0067
160	2.0075	2.0120	2.0067
170	2.0078	2.0132	2.0060
180	2.0081	2.0155	2.0081

Table 4. Principal g values and direction cosines of the paramagnetic species of the γ -irradiated sodium thiosulfate single crystal at room temperature.

Species	principal g value. g.,	Direction cosines in a. b. c axis
A	2.0287	-0.8806 -0.2814 0.3812
	2.0065	-0.3639 - 0.1136 - 0.9245
	2.0173	0.3034 -0.9528 -0.0023
В	2.0368	-0.8983 -0.4105 0.1569
	2.0162	0.4117 0.6613 0.6270
	2.0038	0. 1537 -0. 6278 -0. 7630
c	2.0100	-0.7410 0.0189 -0.6712
	2.0073	-0.6355 0.3032 0.7101
	2.0048	0.2169 0.9527 -0.2126
D	g ** = g **	= g _{zz} =2.0456

결과라 볼 수 있으며 본 연구에서는 20mW의 높 은 마이크로 파력을 사용함이 타당함을 알게 되 었다.

Angle (0)	8A	g _B	gc
0	2. 0081	2.0120	2.0072
10	2.0072	2.0105	2.0067
20	2.0069	2.0102	2.0067
30	2.0090	2.0102	2.0069
40	2.0108	2.0105	2.0069
50	2.0144	2.0120	2.0067
60	2.0179	2.0132	2.0067
70	2.0221	2.0149	2.0067
80	2.0260	2.0158	2.0067
90	2. 0287	2.0167	2.0067
100	2.0305	2.0173	2.0069
110	2.0305	2.0170	2.0072
120	2.0287	2.0167	2.0072
130	2.0251	2 0144	2.0078
140	2.0290	2.0126	2.0081
150	2.0173	2.0108	2.0081
160	2.0132	2.0100	2.0078
170	2.0102	2 0096	2.0075
180	2.0081	2.0096	2.0069

Fig. 2 (a)는 미확인된 A, B, C의 peak 들이 D. P. P. H(2.0036 Gauss) 기의 자장보다 낮은 곳에서 나타남을 알 수 있었다.

Fig. 2(b)에서는 bH=30°인 경우의 spectrum 으로써 Fig. 2(a)와 비교해 볼때 A, B, C peak 들이 모두 그 강도와 위치가 변했음을 볼 수 있 고 특히 A, B, C 세 peak가 모두 둘로 갈라짐 을 볼 수 있었다. A, B 두 peak는 같은 group 에 속하는 상자성 종으로 기대되는데 A₁, A₂, B₁, B₂로 갈라지는 현상은 상자성 중심이 서로 다른 종으로 갈라지는 것이 아니라, 이것은 상자 성 중심기의 결정학적인 대칭 관계가 방향성을 나타내며 자장의 방향에 따라 같은 상자성 중심 의자장과 방향의 이중성에 따른 energy splitting 의 정도가 달라짐에 공명흡수의 차이가 생기며 이에 따라 A, B 및 C의 peak가 각자 둘로 갈 라지는 것이다.

그러나 회전축이 b축, c 축인 경우는 다시 A, B, C 로 되돌아가 하나로 나타난다. Fig.

梁 鼎 成

2(c), Fig. 2(b)와 비교해 볼 때 B₂ peak의 선 위치가 낮은 자장쪽으로 이동되었고 C₁의 강도 는 강해진 것을 볼 수 있었다. Fig. 2(d)는 Fig. 2(c)에 비해 B₁, B₂ peak의 강도가 약해졌고 A₁, A₂의 peak가 서로 겹쳐 질려고 함을 알 수 있 었다. 또 C₁, C₂ 선위치가 바뀐것도 알 수 있었 다. Fig. 2(e)는 Fig. 2(d)에 비해 B₁ peak가 높은 자장쪽으로 이동되어 A₁과 겹쳐짐을 볼 수 있었다.

 Fig. 2(f)는 A1, B2 peak와 B1, C2, C1 peak

 들이 겹쳐 인접하여 질려고 함을 볼 수 있었다.

 Fig. 2(g)는 각도의 주기성으로 보아 Fig. 2(a)

 와 동일한 것이어야 한다. Na2S2O3 단결정은 단

 사형⁹이며 space group은 p21/C 이고 단위결

 정내에 4분자가 속하고 육방단면 (hexagonal

 cross section)을 갖는다. 그 단결정내 상자성 중

 심들의 peak 돌은 위에 논한 바와 같이 모두 자

장방향에 따라 각도의 의존성을 갖는 무등방성

임을 알 수 있었다. Fig. 2에서는 B의 peak 보다 겹쳐진 A, C peak 의 강도가 큰 것을 알수 있고 새로 D peak 가 나타남을 보여준 것이다. Fig. 4는 A, B, C peak 가 Fig. 3과 같이 갈라지지 않고 D peak 를 볼 수 있으며 Figs. 5, 6, 7에서는 각 상자 성종에 대응하는 선위치들이 좋은 주기성을 보 이면서 변하는 것을 볼 수 있다. 각도변화의 주 기성을 봐 ESR peak 들의 각도의존성을 일목요 연하게 그려봄으로써 ESR spectrum chart로 부 터 직접 어떤 peak가 어떤 상자성종에 해당되는 peak인 것을 쉽게 구별할 수 있었다. 각종에 해 당하는 peak 를 알아보면 최소 자장에서 나타난 peak와 최대 자장에서 나타난 peak는 약 90°간 격으로 주기성을 나타냄을 알 수 있었다. 이와 같이 회전축을 «축에서 »축, «축으로 변화시 켰을 때 어느 군의 peak들이 각각 A, B, C peak 인가를 구별하는 것이 매우 중요하다. 회전축이 변해도 자장방향의 동일성을 대응시켜 각 상자 성종의 peak 둘은 서로 구별할 수 있었다.

Figs. 5, 6, 7에서 동방성 D.P.P.H기의 전 위치에 대한 다른 상자성종(A, B, C)들의 상대 적인 선위치간의 거리로부터 구한 자장의 값을 다음식¹⁴에 대입하여 각 상자성종들의 *g*값을 계 산한 것이 *Tables* 1, 2, 3이다.

$$g_{c} = g_{\text{ref.}} \left(1 + \frac{H_{\text{ref.}} - H_{c}}{H_{c}} \right)$$

$$\mathfrak{E} = g = 2.0036 \left(1 - \frac{\sigma H}{H} \right)$$
(7)

여기서 $H_{ref.} 는 D.P.P.H기의 peak가 나타난 자$ 장이고, g. 또는 g 는 구하려는 각 상자성종들의g 값이며 gref. 또는 2.0036은 D.P.P.H. g값을 $나타낸다. Table 1 에서 <math>A_1 \in bH=90^\circ$ 에서 g= 2.0123으로 최소, $bH=10^\circ$ 에서 g=2.0317로 최 대, $A_2 \succeq bH=70^\circ$ 에서 g=2.0129로 최소 bH=180에서 g=2.0314로 최대가 된다. 같은 방법으 로 B_1 과 B_2 , C_1 과 C_2 의 경우도 g 값이 최소, 최 대치를 읽을 수 있었다.

Tables 2, 3에서도 각각 A, B, C의 종에 대 한 8 값의 최소, 최대치를 각각 읽을 수 있었으 며 미소한 오차는 있었으나 대부분의 경우 90° 간격으로 최소, 최대치가 주기적으로 나타남을 알 수 있었다. 그리고 모든 상자성종들의 8 값들 은 D.P.P.H의 g 값보다 큰 값임을 알 수 있으 며, Table 4에서 보는바와 같이 a 회전축의 A_l, A2, B1, B2, C1, C2 들은 b 및 c의 회전축의 A, B, C와 서로 결합시켜 구한 A, B, C의 주 8 값의 평균치가 모두 동일함을 알 수 있었다. 따라서 A1, A2는 A와 B1, B2는 B와 C1, C2는 C와 동일한 상자성종이며 A와 B의 주 g값의 평균치가 같은 것으로 보아 A와 B는 동일한 상자 성종 암을 예측할 수 있다. Goto와 Matumura¹⁰ 는 A peak는 갈라지나 B peak는 갈라지지 않 는다고 했으며 그들의 C peak는 본 연구의 D peak 에 해당하는 것으로 보인다.

본 연구의 C에 해당하는 peak는 그들의 연구 에서는 나타나지 않았었다. 따라서 A, B, C peak가 모두 갈라지는 현상은 본 연구가 그만 큮 좋은 분해능을 보이는 spectrum 이라고 할 수 있다.

Goto와 그의 공동연구자들은 S₂O₃ group의 S-S 결합이 r-선에 의해 깨져서 S·와 SO₃·기들 을 형성하는 것으로 잘못 생각한것 같다. 다시

말하면 A중심은 S기로, B 중심은 SO3기로 C 중심은 중합황기로 생각한 것 같다.

DeLisle와 Golding⁹은 X-선에 조사된 Na₂S₂O₃ 단결정의 ESR 연구에서는 group(1)은 불변하는 g=2.03으로 등방성 peak이며 group(2)와 (3) 은 무등방성 peak로 자장이 (001)면과 (100)면 에 나란하게 하고 자각 회전시킬때 단일선이 된 다고 하였다. 이것은 본 연구에서 a축으로 회 전시 A₁, A₂, B₁, B₂, C₁, C₂가 b축과 c 축으 로 회전시 A, B, C로 단일선으로 되는 결과와 일치한다. 본 연구에서 A₁, A₂, B₁, B₂로 표시 되는 4개의 spectrum선들은 A, B, 두 set로 분 리되기도 한다.

이것은 상자성종이 결정격자에서 일정한 4개 의 자리에 그 자신이 배향할 수 있다는 것을 관 찰할 수 있다.

Na₂S₂O₃ 단결정은 단위 cell 당 4분자들을 가 지기 때문에 결정격자에서 4개의 다른 배향을 한 상자성종들을 갖기 때문에 상자성종들의 축 대칭은 티오황산염 단위의 분자 대칭에 명확한 관계가 있다. 종 A의 주 g 값은 g_{xx}=2.0287 g_{yy}=2.0065 g_{xx}=2.0173 이고 방향여현은 Table 4 에서 보는 바와 같다. 종 A의 g 값의 평균치인 g_{av}=2.0175로써 DeLisle과 Golding이 연구에서 종 (3)의 g_{av}=2.0160과 유사함을 알 수 있다. 이때 가능한 sulfur-oxy 기들은 SO₂⁺, SO₂⁻, SO₃⁺, SO₃⁻들이다, 그러나 이들중 SO₃⁻ 기는 무등방성 peak로 g=2.0036¹⁵임을 보아 본 연구 에 나타난 상자성 종에는 해당되지 않는다,

SO₂-기의 주 g 값은 Symon¹⁶의 실험치는 g_{av}= 2.0077 이었다. 이값은 본연구의 *C* 종의 g_{av}= 2.0074 값과 유사하다. 또한 DeLisle 과 Golding 의 연구치 g_{av}=2.0071과도 유사하며 본 연구치 는 이들 두 연구치의 평균치에 해당한다. 본 연 구에서는 *C* 종 즉, SO₂-기의 특성 주 g 값과 방 향여현을 주어 상자성 결함의 기준치를 제시한 것이다. 이상과 같은 이유로 A종은 SO₂+나 SO₃+ 기중 하나에 대응할 것이다. 그러나 위 두 상자 성종에 대한 방사선 조사 실험으로 확인된 바 없 다. SO₃+는 NO₃와 등전자(isoelctron)로 g 값은 g_x=1.998, g₁=2.0029¹⁷로 주 g 값은 free spin 값과 유사하다. 고로 본 연구의 상자성종의 어느 것도 이 SO₃⁺에 해당되지 않는다. 그러므로 A 는 SO₂⁺기에 대응된다고 유추할 수 있다. 앞에 서 논한 바와 같이 A, B는 상자성기의 대칭관계 에서 나타나는 방향성의 차이 문제이지 동일한 상자성종 또는 결함에 해당한다.

실제로 SO₂⁺는 NO₂ 및 CO₂⁻와 등전자이긴 하 지만 SO₂⁺의 주 g 값은 2.0070, 2.0047, 2.0090 이고 NO₂와 CO₂⁻기의 주 g 값은 각각 1.9910, 2.0015, 2.0057¹⁸ 및 1.9975, 2.0014, 2.0032¹⁹이 다. 그러나 NO₂와 CO₂⁻기 간의 주 g 값이 0.006 차이가 나며 등전자 관계를 유추하여 SO₂⁺로 단 정하는 것이 합리적이라고 설명한 Delisle과 Gol ding의 논리에는 무리가 있는 것 같다. 정확한 상 자성종의 확인을 위하여는 ENDOR spectroscopy 나 Mössbauer spectroscopy 에 의해 확인되어야 할줄 믿는다. 더구나 A와 B 종을 S·기로 C종을 SO₃·기로 할당한 Goto와 Matumura의 연구 결 파는 합리성이 적다고 생각된다.

상자성종 D는 peak의 강도가 대단히 작은 등 방성 peak이며 반감기가 단지 2, 3시간 밖에 안 되어 시간이 지나감에 따라 이 peak의 강도는 점차 작아지고 몇일이 지나면 noise 와 peak의 강도를 분간할 수 없을 정도로 약해진다. D의 g 값은 Delisle과 Golding의 실험치인 group¹의 g 값 2.03 보다는 훨씬 크다. Eager 와 Mahadeppa¹¹는 가장 낮은 자장의 g 값으로 D의 g값 이 2.032임을 밝힌바 있다. D는 다상 황기이기 때문에 방향에 따라 동일성을 보인다고 생각할 수 있다. 한편 기수전자가 주로 황원자에 포함 된 자유기가 이 구조의 본질²⁰이라고 생각된 바 도 있다.

이같이 낮은 자장구조는 petroleum에 녹은 황 의 ESR spectrum 또는 얼은 황증기의 ESR spectrum으로 간주되어 왔다. 이는 Na₂S₂O₃ 5H₂O 단결정에 7-선을 조사시키면 결정수에 녹은 교 질 황이 생성되기 때문에 생기는 다중 황기라고 말할 수 있다. 이 7-선 조사의 손상에 의한 교 짙 황에서 다시 결정화될 때 이 다상 황기는 농 도가 작아져 반감기가 짧고 불안정하며 교질 황 다상 황기이기 때문에 동방성을 나타낸다고 말

梁 鼎 成

254

할 수 있다.

이상에서 논한바와 같이 무등방성 상자성 A와 B는 SO2*기이며 상자성종 C는 SO2~기이고 등방 성 상자성종 D는 교질다상 황기에 해당된다.

- 인 용 문 헌
- 1. E. Zavoisky, J. Phys. U.S.S.R, 9(211) (1945).
- C. L. Aseltine and Y. W. Kim, J. Phys. Chem. Solids, 28, 867 (1967): 29, 531(1968).
- C. H. Yo, J. I. Hony, E. O. Kim, W. Y. Chung and J. S. Yang, J. Korean Chem. Soc., 25(6), 367 (1981).
- K. Aiki and K. Hukuda, J. Phys. Soc. Japan, 22, 633 (1967).
- N. Hariharan and J. Sobhanadri, J. Phys. Chem. Solids, 30, 778 (1969).
- V. V. Gromov and J. R. Morton, Can. J. Chem. 44, 527 (1966).
- N. Hariharan and J. Sobhanadri, Mal. Phys., 18, 713 (1970); I. Suzuki and R. Bae, J. Phys. Soc. Japan, 30, 586 (1971).
- 8. I. Barbu, Phys. Stat. Sol. (6) 45, K129 (1971).
- R. M. Golding and J. M. DeLisle, J. Chem. Phys. 43, 3298 (1965).

- N. Goto and O. Matumura, J. Phys. Japan, 18, 1702 (1963).
- R. L. Eager and O. S. Mahadevappa, Can. J. Chem., 41, 2106 (1963).
- A. Carrington and A. D. Mclachlan, "Introduction to Magnetic Resanance," P. 133, Haper and Row, New York, N.Y., 1967.
- D. S. Schonland, Proc. Phys. Soc., 73, 788 (1957)
- P. B. Ayscough, "Electron Spin Resonance in Chemistry," P. 156~160, Methuen and Co. Lted, London, 1967.
- C. Ramasastry and C. S. Sunandana, J. Magn. Rosonance, 21, 311 (1976).
- M. R. C. Symons, Advan. Chem. Soc., No. 36, 76 (1962).
- H. Zeldes and R. Livingston, J. Chem. Phys., 35, 563 (1961).
- D. W. Quenall and D. H. Whiffen, Mol. Phys.,
 4, 135 (1961).
- D. M. Gardner and G. K. Fraenkel, J. Amer. Chem. Soc., 78, 3279 (1956).
- D. J. E. Ingram and M. C. R. Symons, J. Chem. Soc., 2437 (1957).