• 제목/요약/키워드: solution in closed-form

검색결과 418건 처리시간 0.038초

OFDM에서 무선자원 절약을 위한 블라인드 주파수 옵셋 추정 방식 (Blind Frequency offset Estimation for Radio Resource Saving in OFDM)

  • 전형구;김경수
    • 한국통신학회논문지
    • /
    • 제34권10C호
    • /
    • pp.1001-1009
    • /
    • 2009
  • 본 논문은 orthogonal frequency division multiplexing (OFDM) 통신에서 무선자원을 절약할 수 있는 효율적인 블라인드(blind) 주파수 옵셋 추정 방식을 제안한다. 제안된 방식은 OFDM 통신에서 cyclic prefix (CP)를 이용하여 시간차가 있는 2개의 OFDM 신호 블록을 얻고 이를 이용하여 블라인드 주파수 옵셋 추정을 위한 비용함수를 정의한다. 제안된 방식에서 비용함수는 3개의 독립적인 주파수 옵셋 위치에서 비용함수 값들을 이용하여 폐쇄형(closed form)의 코사인 함수로 나타낼 수 있음을 보인다. 이 코사인 함수를 이용하면 전체 주파수 옵셋 범위에 대한 탐색 없이 최저 비용함수 값을 쉽게 계산할 수 있기 때문에 주파수 옵셋 추정이 효율적이다. 폐쇄형 코사인 함수로부터 구한 주파수 옵셋은 정확도가 해상도에 제한 받지 않기 때문에 signal-to-noise ratio (SNR)이 증가할 수 록 추정 오차가 계속 줄거듦을 확인하였다. 컴퓨터 시뮬레이션 결과 제안된 방식은 기존의 오버샘플링(oversampling)기법이나 MUSIC 방식보다 평균제곱오차 (mean square error, MSE) 성능이 우수함을 보였다.

해양전자탐사 모델링을 위한 1차장 계산법 (A Scheme for Computing Primary Fields in Modeling of Marine Controlled-Source Electromagnetic Surveys)

  • 김희준
    • 지구물리와물리탐사
    • /
    • 제14권3호
    • /
    • pp.185-190
    • /
    • 2011
  • 해양전자탐사의 모델링에서 1차장은 송수신 간격이 넓어지면 크게 감소하기 때문에 기존의 선형필터로서는 정확한 계산이 어려워진다. 그러나 균질 반무한공간의 경우 TM 모드의 Hankel 변환에는 해석해가 존재하므로 이를 이용하면 Hankel 변환의 계산을 위한 선형필터의 정확도를 검토할 수 있다. 그 결과 송수신 간격이 커짐에 따라서 전자기장이 반대수 그래프에서 선형적으로 감소하는 경우는 총 36가지 송수신 조합 중 9가지 뿐이며, 나머지 조합에서는 전자기장이 0 이거나 아니면 공기층의 영향을 받아 전자기장의 감소가 크지 않다. 다행히 이 9가지 조합에는 해석해가 존재하고, 나머지 조합에서는 전자기장의 극단적인 감소가 나타나지 않으므로 비교적 길이가 짧은 필터로도 Hankel 변환의 정확한 계산이 가능하다. 이상의 결과를 토대로 이 논문에서는 균질 반무한공간 모델에 대한 전자기장 계산법으로서 TM 모드의 Hankel 변환에는 해석해를 쓰고 TE 모드 계산에는 그 계수가 61개인 필터를 쓰는 방식을 제안한다.

An Ordered Successive Interference Cancellation Scheme in UWB MIMO Systems

  • An, Jin-Young;Kim, Sang-Choon
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.472-474
    • /
    • 2009
  • In this letter, an ordered successive interference cancellation (OSIC) scheme is applied for multiple-input multiple-output (MIMO) detection in ultra-wideband (UWB) communication systems. The error rate expression of an OSIC receiver on a log-normal multipath fading channel is theoretically derived in a closed form solution. Its bit error rate performance is analytically compared with that of a zero forcing receiver in the UWB MIMO detection scheme followed by RAKE combining.

Analytical solution of stress-strain relationship of modified Cam clay in undrained shear

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • 제1권4호
    • /
    • pp.263-274
    • /
    • 2009
  • The modified Cam clay (MCC) model is used to study the response of virgin compressed clay in undrained compression. The MCC deviatoric stress-strain relationship is obtained in closed form. Elastic and plastic deviatoric strains are taken into account in the analysis. For the determination of the elastic strain components, both a variable shear modulus and constant shear modulus are considered. Constitutive relationships are applied to the well-known London and Weald clays sheared in undrained compression.

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

탄소성 대변형에 관한 비등방 구성방정식 (Anisotropic Constitutive Model at Large Viscoplastic Deformations)

  • Cho, Han-Wook
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산 (Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method)

  • 이형연;이재한;유봉
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.