• Title/Summary/Keyword: solution in closed-form

Search Result 418, Processing Time 0.029 seconds

Blind Frequency offset Estimation for Radio Resource Saving in OFDM (OFDM에서 무선자원 절약을 위한 블라인드 주파수 옵셋 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1001-1009
    • /
    • 2009
  • In this paper, an efficient blind frequency offset estimation method for radio resource saving in orthogonal frequency division multiplexing (OFDM) systems is proposed. In the proposed method, we obtain two time different received OFDM signal blocks by using the cyclic prefix and define the cost function by using the two OFDM signal blocks. We show that the cost function can be approximately expressed as a closed form cosine function. The approximated cosine function can be obtained from three independent cost function values calculated at three different frequency offsets. In the proposed method, the frequency offset can be estimated by calculating a frequency offset minimizing the approximated cosine function without searching all the frequency offset range. Unlike the conventional methods such as MUSIC method, the accuracy of the proposed method is independent of the searching resolution since the closed form solution exists. The computer simulation shows that the performance of the proposed method is superior to those of the MUSIC and the oversampling method.

A Scheme for Computing Primary Fields in Modeling of Marine Controlled-Source Electromagnetic Surveys (해양전자탐사 모델링을 위한 1차장 계산법)

  • Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • In marine controlled-source electromagnetic (CSEM) modeling, it may be difficult to evaluate primary fields accurately using conventional linear filters because they decay very rapidly with distance. However, since there exists a closed-form solution to the Hankel transform in TM mode for a homogeneous half space, we can assess the accuracy of linear filters for evaluating the Hankel transform. As a result, only nine out of 36 source-receiver pairs show that EM fields decrease linearly in semi-log scale with an increase of source-receiver distance, while EM fields are either 0 or not reduced significantly due to an effect of the air layer. There also exist closed-form solutions for the nine pairs, and the others can be evaluated accurately with a relatively short filter. This paper proposes a method which uses closed-form solutions for TM-mode Hankel transforms and a filter with 61 coefficients for TE-mode ones.

An Ordered Successive Interference Cancellation Scheme in UWB MIMO Systems

  • An, Jin-Young;Kim, Sang-Choon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.472-474
    • /
    • 2009
  • In this letter, an ordered successive interference cancellation (OSIC) scheme is applied for multiple-input multiple-output (MIMO) detection in ultra-wideband (UWB) communication systems. The error rate expression of an OSIC receiver on a log-normal multipath fading channel is theoretically derived in a closed form solution. Its bit error rate performance is analytically compared with that of a zero forcing receiver in the UWB MIMO detection scheme followed by RAKE combining.

Analytical solution of stress-strain relationship of modified Cam clay in undrained shear

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-274
    • /
    • 2009
  • The modified Cam clay (MCC) model is used to study the response of virgin compressed clay in undrained compression. The MCC deviatoric stress-strain relationship is obtained in closed form. Elastic and plastic deviatoric strains are taken into account in the analysis. For the determination of the elastic strain components, both a variable shear modulus and constant shear modulus are considered. Constitutive relationships are applied to the well-known London and Weald clays sheared in undrained compression.

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

Anisotropic Constitutive Model at Large Viscoplastic Deformations (탄소성 대변형에 관한 비등방 구성방정식)

  • Cho, Han-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method (가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산)

  • Lee, Hyeong-Yeon;Lee, Jae-Han;Yoo, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.