• Title/Summary/Keyword: solution coating method

Search Result 544, Processing Time 0.028 seconds

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.

Synthesis of High Concentrated $TiO_2$ Nano Colloids and Coating on Boron Nitride Powders (고순도로 합성된 나노콜로이드 티타늄옥사이드의 BN 파우더 코팅에 관한 연구)

  • HYEIN JANG;KYUNGCHUL LEE;SUNGHO HONG;HONGKEUN JI
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.214-224
    • /
    • 2002
  • High concentrated $TiO_2$ nano colloids were synthesized by sol-gel method. Reactions were performed in $TiCl_4$/HCl/$H_2O$ aqueous solution and the conditions of particles such as shape, size and aggregation, etc. were controlled by polymerization and adsorption of acrylamide in surface of $TiO_2$ nano particles. And also, aminopropyltriethoxysilane was added instead of acrylamide and compared each other. The prepared colloids were well dispersed and showed the strong absorption peaks at 350nm-370nm which is blue shifted to 20-30nm, compared to macro particles. The obtained techniques from $TiO_2$ nato colloids synthesis were utilized in coating on boron nitride powders which are nonpolar and isoelectronic materials of carbon. Their surface morphology, structure, thermal stability and U. V absorption chracteristics were examined by SEM(Scanning Electron Microscopy), XRD(X-ray diffraction), TG/DTA(Thermogravimetric and Differential Thermal Analysis), UV-VIS(Ultraviolet-Visible Spectroscopy).

Tribological Properties of Carbon Nanotube Thin Films by using Electrodynamic Spraying Method (전기 분사 증착 방식을 이용한 탄소 나노 튜브 박막의 트라이볼로지적 특성에 관한 연구)

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.313-317
    • /
    • 2018
  • Carbon-based coatings, including carbon nanotubes (CNTs), graphene, and buckyball ($C_{60}$), receive much interest because of their outstanding mechanical and electrical properties for a wide range of electromechanical component-based applications. Previous experimental results demonstrate that these carbon-based coatings are promising solid lubricants because of their superior tribological properties, and thus help prolong the lifetime of silicon-based applications. In this study, CNT coatings are deposited on a bare silicon (100) substrate by electrodynamic spraying under different deposition conditions. During the coating deposition, the applied voltage, CNT concentration of the solution, distance between the injecting nozzle and the substrate and diameter of the injecting nozzle are optimized to control the thickness and surface roughness of the CNT coatings. The surface morphology and thickness of the coatings are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The friction and wear properties of the coatings are investigated by using a pin-on-reciprocating-type tribotester under various experimental conditions. The friction coefficient of the CNT coating is as low as 0.15 under high normal loads. The overall results reveal that CNT coatings deposited by electrodynamic spraying provide relatively uniform with superior lubrication performance.

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm;Bae, Hongsubm;Rhee, Ilsum
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1334-1339
    • /
    • 2018
  • Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.

Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes (양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구)

  • JUNG, SUNG-MOK;KIM, JAE-YUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder (식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성)

  • Ha-Young Son;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.

PVP Hydrogel Coatings on Polypropylene Fibers using E-beam Irradiation (전자 빔을 이용한 폴리프로필렌 섬유의 PVP 하이드로젤 코팅)

  • Lee, Ji Eun;kwak, Hyo-Bin;Lee, Yong-Hyo;Kim, Kyung-Min;Lim, Jung-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.66-70
    • /
    • 2019
  • The surface of hydrophobic polypropylene (PP) fibers (spun-bonded fabric) was treated by an atmospheric plasma treatment method. These pre-treated hydrophilic PP fabrics were dip-coated in the aqueous poly(N-vinyl pyrrolidone) (PVP) solution. PVP layers on the surface of PP fiber were crosslinked by an irradiation of electron beam. The thickness of PVP hydrogels coated on the surface was easily controlled by changing the concentration of PVP in coating solution. The stepwise surface treatment, PVP coating, and hydrogel formation via electron beam irradiation were analyzed by the measurement of contact angle, scanning electron microscopy, and optical microscopy.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Preparation of oxide barrier on Ag-sheathed Bi2223 tape for the reduction of AC loss (Ag-sheathed Bi2223 tape의 교류손실 저감을 위한 oxide barrier의 형성에 관한 연구)

  • 이세종;이득용;배성규;예경환;송요승
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.149-152
    • /
    • 2002
  • SrZrO3 resistive oxide barriers on Ag sheathed Bi2223 tapes prepared by the sol-gel and dip coating method were evaluated with an aid of Taguchi method and orthogonal arrays to elucidate the effects of experimental parameters, such as ratio of starting solution, amount of additives, and heat treatment temperature and time on the properties of the thin films. Six experimental parameters were selected and then Ll8(21x37) orthogonal arrays were constructed. Finally, SEM and XRD results were related to signal to noise (S/N) ratio to evaluate the optimized experimental condition.

  • PDF