• Title/Summary/Keyword: solubility

Search Result 3,019, Processing Time 0.028 seconds

Solubility and Stability of Melatonin in Propylene glycol and 2-hydroxypropyl-${\beta}$-cyclodextrin vehicles

  • Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Parrott, Keith-A.;Ayres, James-W.;Sack, Robert-L.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.560-565
    • /
    • 1997
  • The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-.betha.-cyclodextrin $(2-HP{\beta}CD)$ vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were $116.9{\pm}0.24^{\circ}C $.and $7249{\pm}217 cal/mol$., respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of $2-HP{\beta}CD$ without PG INCREASED$(R^2=0.993)$. MT solubility in the mixtures of pg and $2-HP{\beta}CD$ also increased linearly but was less than the sum of its solubility in $2-HP{\beta}CD$ and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG(40v/v%) and $2-HP{\beta}CD$ (30w/v%) although efficiency of MT solubilization in $2-HP{\beta}CD$ decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics $(r^2>0.90)$. MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4-10 at $70^{\circ}C$. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed dpwm at a higher concentration. However, the degradation rate constant of MT in 2-HP.betha.CD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  • PDF

Comparative Analysis of Water Absorption and Water Solubility of Alkasite-based Restorative Material

  • Myeong-Gwan Jih;Hye-Jin Cho;Eu-Jin Cha;Tae-Young Park
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.74-79
    • /
    • 2023
  • Purpose: Cention N (Ivoclar Vivadent) was a recently introduced alkasite-based restorative material that was expected to replace amalgam and glass ionomer cement. This material was an esthetic restoration with adequate mechanical strength and release of fluoride and calcium. The purpose of this study was to measure the water sorption and water solubility of Cention N and evaluate its long-term durability compared to other esthetic restorations (Resin-Modified Glass Ionomer cement [RMGIC], Giomer, Composite Resin). Materials and Methods: Twenty specimens each of Cention N (CN), Resin Modified-Glass Ionomer Cement (FJ), Giomer (BF), and Composite Resin (FZ) were made. After each specimen was completely dried in a desiccator for 24 hours using a vacuum pressure pump, the specimen was weighed (m1). After that, the specimen was immersed in distilled water at 37℃ for 7 days, stored in a drying oven, and weighed (m2). After drying completely for 24 hours in a desiccator, the specimen was weighed (m3) to calculate the water absorption and water solubility using Formulas 1 and 2. The measured values were statistically processed and analyzed using SPSS, and the significance level was set at 0.05. Result: When measuring water sorption, FJ (122.61 ㎍/mm3) showed significantly higher water sorption than CN (35.42 ㎍/mm3) (P<0.05). There was no significant difference between FZ (18.03 ㎍/mm3) and BF (14.76 ㎍/mm3) (P=0.930). When measuring water solubility, CN (6.65 ㎍/mm3) showed significantly higher water solubility than FJ (1.47 ㎍/mm3) (P<0.05). Conclusion: Cention N had lower water sorption than RMGIC, but higher water solubility, indicating that it is more vulnerable to moisture and has lessened long-term durability.

Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility (베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성)

  • An, Eun Jung;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.66-74
    • /
    • 2022
  • To improve the solubility of β-carotene, three types of β-carotene-loaded nanocapsules were prepared using chitosan (CS) and two cross-linkers, sodium tripolyphosphate (TPP) and hyaluronic acid (HA), alone or in combination (CS-TPP, CS-TPP-HA, and CS-HA). The entrapment efficiency of all nanocapsules significantly increased with an increase in TPP and HA, with the efficiency ranging from 95% to 99%. The solubility of β-carotene was significantly improved by CS nanoencapsulation before and after lyophilization and during storage. CS/HA nanoencapsulation significantly improved (by 11-fold) the water solubility of β-carotene. In particular, CS/HA nanoencapsulation was the most effective in terms of not only the solubility of β-carotene, but also the redispersibility ratio. Therefore, CS/HA encapsulation could be useful for improving the solubility of poorly soluble active ingredients, such as β-carotene.

Enhancing the Physicochemical Properties of Sodium Iodide-based Root Canal Filling Material with Lanolin Incorporation

  • Hye Shin Park;Jongsoo Kim;Joonhaeng Lee;Jisun Shin;Mi Ran Han;Jongbin Kim;Yujin Kim;Junghwan Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.140-148
    • /
    • 2024
  • This study aimed to enhance the physicochemical properties of sodium iodide-based root filling materials, particularly solubility. In earlier developmental stages, the iodoform-containing paste exhibited high antibacterial efficacy but failed to meet only the solubility requirement among the ISO 6876 criteria. Therefore, this study focused on enhancing the physicochemical properties of the paste under development, particularly centering on reducing its solubility. Four experimental groups were established, including three control group. The previously developed D30 paste was named the Oil 33 group, and the control group was named the Vitapex® group. The Oil 50 group, in which the oil content was increased, and the Oil 45L group, in which lanolin was incorporated. The physical properties (solubility, pH, flowability, and film thickness) of the four pastes were evaluated according to the ISO 6876 standards. No significant differences were observed between the Oil 45L and Vitapex® groups in any of the physical property evaluations. While the Oil 33 and Oil 50 groups met the ISO 6876 standards for flowability and film thickness, the Oil 45L group met all the physical properties. However, reducing the overall oil content may be necessary to enhance the antimicrobial properties. The result of the physicochemical experiments showed that the Oil 45L group with the newly formulated composition and incorporated lanolin exhibited low solubility meeting the ISO 6876 standard of ≤ 3%. We were able to develop a paste with more stable solubility than previous iodide-based root-filling materials. Therefore, the oil content must be further adjusted to improve its antimicrobial properties. If other physical properties also meet the ISO 6876 standards and demonstrate excellent results in cytotoxicity tests, this root filling material could potentially replace existing options.

Hydrolysis of Silk Fibroin on Alkali Conditions (견 피브로인의 알칼리 가수분해)

  • 김남정;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.197-202
    • /
    • 1997
  • To hydrolyze silk fibroin was treated with NaOH solution on various concentrations and times. And it was examined that the addition effects of NaHSO3 solution on the solubility and colouring of silk fibroin. As obtained results are as follows; The more increasement of concentration and time of NaOH treatment, the more increasement of solubility but solubility was slight above 3% concentration of NaOH. Fibroin yield was decreased above 3% concentration. This was due to formation of peptide or amino acids below molecular weight 3,000. Most of molecular weight distribution came out to be under 3,000 in 2% concentration and 4hrs of NaOH treatment. The more increasement of adding concentration and 4hrs of NaOH treatment. The more increasement of adding concentration of NaHSO3, the more reduction of solubility but white index of powder increased. In the results of FT-IR spectras of silk fibroin powder obtained by various concentrations of NaHSO3 treatment, the absorbent peak at 3,400 cm-1 which was considered as -CH=N- (azomethine) was disappeared by the more addition of NaHSO3. It showed that absorbent peak of $\beta$-fibroin moved into low temperature region and transferred to $\alpha$- and random coil structure through the DSC experiment. In the results of amino acid analysis, alkali hydrolysis reduced the oxy amino contents acid like serine and tyrosine, but increased the glycine content by the more addition of NaHSO3.

  • PDF

Budesonide Microemulsions for Enhancing Solubility and Dissolution Rate

  • Piao, Hong-Mei;Cho, Hyun-Jong;Oh, Eui-Chaul;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.417-422
    • /
    • 2009
  • Budesonide belongs to Class II in the Biopharmaceutics Classification System (BCS) for its high permeability and poor aqueous solubility. The purpose of this study was to improve the solubility and dissolution rate of budesonide using an o/w microemulsion system in order to develop a nasal formulation. Based on the results of the solubility study and pseudo ternary phase diagrams, microemulsions of about 80 nm in mean diameter were formulated using isopropyl myristate and Labrasol$^{(R)}$ as an oil phase and a surfactant, respectively. Solubility of budesonide in the microemulsions increased up to 6.50 mg/mL, which is high enough for a nasal formulation. In vitro release profiles of budesonide significantly increased from the microemulsions compared to that of the budesonide powder. These results suggest that the microemulsions of budesonide could further be developed into a clinically useful nasal formulation.

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

A Study on the Foaming Properties of Small red bean Protein Isolates at Various Conditions (분리 팥 단백질의 기포 특성에 영향을 주는 제 요인에 관한 연구)

  • 김현정
    • Journal of the Korean Home Economics Association
    • /
    • v.28 no.2
    • /
    • pp.37-45
    • /
    • 1990
  • The purpose of this study was to determine the foaming properties of two small red bean protein isolates at various conditions. Data concerning the effects of pH, temperature, MaCl concentration, sugar concentration and protein concentration on the properties such as solubility, foam expansion, foam stability were presented. The results were summarized as follows : 1. The crude protein contents of two small red beans were 26.14% and 22.71%. The percentage of nonpolar amino acid group was the highest and that of sulfur containing amino acid group was the lowest. 2. Protein solubility showed the minimum at pH 4.5 which is isoelectric point of small red bean protein isolate adn heat treatment lowered solubility(P<0.05). At pH 4.5, solubility increased sighificantly as 0.4M NaCl was added. However, the effect of sugar concentration in the solubility was not significant. 3. Foam expansion of two small red bean protein isolates was high at pH 4.5 and heat treatment at 10$0^{\circ}C$ lowered foam expansion(P<0.05). While addition of NaCl, sugar did not affect the foma expansion, gradual increment of the protein isolates concentration up to 9% decreased the foma expansion slightly. 4. Foam stability was significantly high at pH 4.5 and heat treatment at 10$0^{\circ}C$ lowered foam stability. Addition of sugar caused slight decrease in foam stability. From 1% to 9% suspension, foma stability increased significantly as protein concentration increased(P<0.05)

  • PDF

Measurement of Toluene Solubility in PVAc Using a Quartz Crystal Microbalance (PVAc에서 Quartz Crystal Microbalance를 이용한 톨루엔의 용해도 측정에 관한 연구)

  • Kim, S.B.
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2008
  • The resistance and frequency change of a quartz crystal microbalance during toluene absorption was measured for poly(vinyl acetate) (PVAc) with 268 nm thickness. Solubility of toluene in PVAc were measured at temperatures from 25$^{\circ}C$ to 42$^{\circ}C$ and pressures up to 28.4 torr. The frequency of a quartz crystal microbalance increased with increasing temperature and decreased with an increase in toluene vapor pressure. The resistance of a quartz crystal microbalance increased with increasing toluene vapor pressure and decreased with an increase in temperature. A greater pressure of toluene results in a greater solubility of the toluene into the PVAc film. The change of solubility was calculated by Sauerbrey equation.

Molecular Diffusion of Water in Paper(III) -Theoretical analysis on vapor sorption properties of fiber surface - (종이내 수분확산 (제3보) -종이 표면의 수증기-흡습성에 관한 이론적 고찰-)

  • Yoon, Sung-Hoon;Jeon, Yang;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • The study aimed at the theoretical analysis of vapor sorption properties of, pp.rmaking fibers. Water vapor affinity and sorption thermodynamic properties of fiber constituents were evaluated based on Henry's law and Hildebrand's solubility theory. Theoretical equilibrium moisture content(ThEMC) on fiber surface was estimated using functional group contribution. Crystallinity of cellulose in fiber significantly controlled the water vapor solubility. Comparisons of the measured equilibrium moisture content data and the estimated ThEMC data coincidently suggested the fact that crystallinity of cellulose in fibers was around 60% to 70%. Carbohydrates constituents including amorphous cellulose and hemicellulose in fibers showed higher vapor solubility than lignin molecules. High correlation existed between ThEMC and vapor solubility as well as between ThEMC and solubility parameter. In the thermodynamic analysis on water-vapor sorption process in fibers, the sorption enthalpy increased as RH increased, whereas sorption entropy and free energy decreased with increasing RH.

  • PDF