Measurement of Toluene Solubility in PVAc Using a Quartz Crystal Microbalance

PVAc에서 Quartz Crystal Microbalance를 이용한 톨루엔의 용해도 측정에 관한 연구

  • Kim, S.B. (Department of Chemical Engineering, Kyonggi University)
  • Published : 2008.09.30

Abstract

The resistance and frequency change of a quartz crystal microbalance during toluene absorption was measured for poly(vinyl acetate) (PVAc) with 268 nm thickness. Solubility of toluene in PVAc were measured at temperatures from 25$^{\circ}C$ to 42$^{\circ}C$ and pressures up to 28.4 torr. The frequency of a quartz crystal microbalance increased with increasing temperature and decreased with an increase in toluene vapor pressure. The resistance of a quartz crystal microbalance increased with increasing toluene vapor pressure and decreased with an increase in temperature. A greater pressure of toluene results in a greater solubility of the toluene into the PVAc film. The change of solubility was calculated by Sauerbrey equation.

268 nm두께의 PVAc가 코팅된 수정결정 미소저울(QCM)을 사용하여 저항과 진동수 변화를 측정하였다. 이를 이용하여 온도($25^{\circ}C\sim42^{\circ}C$)와 톨루엔의 증기압(12.4$\sim$28.4 torr)변화에 따른 톨루엔의 폴리비닐아세테이트에 대한 용해도를 측정하였다. 진동수는 온도가 증가함에 따라 증가하였으나 톨루엔의 증기압이 증가하면 감소하는 경향을 보였다. 톨루엔의 온도가 증가함에 따라 저항은 감소하였으며, 증기압이 증가하면 저항도 증가하는 경향을 나타내었다. Sauerbrey 식을 이용하여 온도와 압력변화에 따른 용해도 변화를 측정하였다.

Keywords

References

  1. H. Wen, H.S. Elbro, and P. Alessi, Polymer Solution Data Collection Part 1; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt am Main, Germany (1992)
  2. H. Wen, H.S. Elbro, and P. Alessi, Polymer Solution Data Collection Part 2+3; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt am Main, Germany (1992)
  3. W.H. King, Using quartz crystal as sorption detectors part2. Res./Dev. May, 28 (1969)
  4. D.C. Bonner and Y.A Cheng, "New method for determination of equilibrium sorption of gases by polymers at elevated temperatures and pressures" J. Polym. Sci., Polym. Lett. 13, 259 (1975) https://doi.org/10.1002/pol.1975.130130502
  5. H. Masuoka, N. Murashige, and M. Yorizane, "Measurement of solubility of organic solvents in polyisobutylene using the piezo-electric-quartz sorption method" Fluid Phase Equilib., 18, 155 (1984) https://doi.org/10.1016/0378-3812(84)87004-1
  6. N. Wang, S. Takishima, and H. Masuoka, "Solubility measurements of benzene and cyclohexane in molten polyisobutylene by the piezoelectric- quartz sorption method and its correlation by modified dual sorption model" Kagaku Kogaku Ronbunshu, 15, 313 (1989) https://doi.org/10.1252/kakoronbunshu.15.313
  7. N. Wang, S. Takishima, and H. Masuoka, "Solubility of benzene, toluene and cyclohexane in polystyrene below its glass temperature", Kagaku Kogaku Ronbunshu, 15, 795 (1989) https://doi.org/10.1252/kakoronbunshu.15.795
  8. N. Wang, S. Takishima, and H. Masuoka, "Solubility measurements of gas in polymer by the piezoelectric-quartz sorption method and its correlation", Kagaku Kogaku Ronbunshu, 16, 931 (1990) https://doi.org/10.1252/kakoronbunshu.16.931
  9. H. Wong, S.C. Campbell, and B.R. Bhethanabotla, "Sorption of benzene, toluene and chloroform by poly(styrene) at 298.15k and 323.15k using a quartz crystal microbalance". Fluid phase Equilib., 139, 371 (1997) https://doi.org/10.1016/S0378-3812(97)00158-1
  10. H. Wong, S.C. Campbell, and B.R. Bhethanabotla, "Sorption of benzene, tetrahydrofuran and 2-buranone by poly(binyl acetate) at 323.15k using a quartz crystal balance". Fluid Phase Equilib., 179, 181 (2001) https://doi.org/10.1016/S0378-3812(00)00499-4
  11. S.P.V.N. Mikkilineni and D.A. Tree, "High, M. S. Thermophysical properties of penetrants in polymers via a piezoelectric quartz crystal microbalance", J. Chem. Eng. Data, 40, 750 (1995) https://doi.org/10.1021/je00020a006
  12. R.N. French and G.J. Koplos, "Activity coefficients of solvents in elastomers measured with a quartz crystal microbalance", Fluid Phase Equilib., 160, 879 (1999) https://doi.org/10.1016/S0378-3812(99)00120-X
  13. D. Boudouris, J. Prinos, M. Bridakis, M. Pantoula, and C. Panayiotou, "Measurement of HFC-22 and HFC-152a sorption by polymers using a quartz crystal microbalance", Ind. Eng. Chem. Res., 40, 604 (2001) https://doi.org/10.1021/ie000382h
  14. G. Sauerbrey, "Verwendung von schwingquarqen zur mikrowagung", J. Phys., 155, 206 (1959) https://doi.org/10.1007/BF01337937