• Title/Summary/Keyword: solid-oxide fuel cell

Search Result 510, Processing Time 0.029 seconds

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Development of Reduced Temperature Solid Oxide Fuel Cells and Test of a Short Stack (저온형 고체산화물 연료전지의 개발과 이를 이용한 소형 스택의 성능 시험)

  • 유영성;박진우;임희천;이규창;조남웅
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.649-653
    • /
    • 2003
  • 일반적으로 연료전지에는 알카리형(AFC)과 인산형(PAFC), 고분자형 연료전지(PEMFC) 등과 같이 비교적 저온에서 동작되는 연료전지와 고온형으로 $650^{\circ}C$에서 정온 동작되는 용융탄산염형 연료전지(MCFC)와 운전온도가 약 500~100$0^{\circ}C$로 폭넓게 적용될 수 있는 고체산화물 연료전지(혹은 고체전해질 연료전지, Solid Oxide Fuel Cell, SOFC)가 있다.(중략)

  • PDF

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Evaluation of Properties and Fabrication of Tubular Supports Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 SOFC 관형 세라믹 지지체의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In this study, we fabricated tubular ceramic support for segmented-in-series solid oxide fuel cell (SOFC) by using CSZ(CaO-stabilized $ZrO_2$) as main material and activated carbon as pore former. Thermal expansion properties of ceramic support with different amounts of activated carbon were analyzed by using dilatometer to decide a suitable sintering temperature. The tubular ceramic supports with different amounts of activated carbon (5, 10, 15wt.%) were fabricated by the extrusion technique. After sintering at $1100^{\circ}C$ and $1400^{\circ}C$ for 5h., cross section and surface morphology of tubular ceramic support were analyzed by using SEM image. Also, the porosity, mechanical property, gas permeability of tubular ceramic supports was measured. Based on these results, we established the suitable fabrication technique of tubular ceramic support for segmented-in-series SOFC.

A Study of Deduction of evaluation Items for Design of SOFC stack safety performance evaluation system (SOFC 스택 안전성능 평가 시스템 제작을 위한 평가항목 도출에 관한 연구)

  • Park, Tae-Seong;Nam, Tae-Ho;Lee, Duk-Gwon;Lee, Seung-Kuk;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.81-87
    • /
    • 2017
  • SOFC(Solid Oxide Fuel Cell) is one of the high-temperature fuel cells, SOFC system and Stack has a high temperature operating Characteristics. These Characteristics cause a lot of trouble in the design of the system and selection materials, securing durability, and securing safety performance. Therefore, For Commercialization and Supply of SOFC, the development of safety performance assessment techniques and evaluation systems should go together. In this study, we analyzed the evaluation items of SOFC Safety performance standards and risk factors of the stack for design of stack safety performance evaluation system. Based on the analyzed data, the evaluation item was deducted for design of stack safety performance evaluation system. Through the results of this study, we expect to facilitate the supply of SOFC and contribute to a safe use environment.

Thermal Characteristics of Samarium-based Composite Cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/ Sm_{0.2}Ce_{0.8}O_{1.9}$) for Intermediate Temperature-operating Solid Oxide Fuel Cell (고체산화물 연료전지의 Samarium Oxide 혼합 공기극에 대한 열특성 분석)

  • Baek, Seung-Wook;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2021-2025
    • /
    • 2007
  • Performance of single cell at solid oxide fuel cell (SOFC) system is largely affected by electrocatalytic and thermal properties of cathode. Samarium-based perovskite oxide material is recently recognized as promising cathode material for intermediate temperature-operating SOFC due to its high electrocatalytic property. Perovskite structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ and its composite material, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/Sm_{0.2}Ce_{0.8}O_{1.9}$ were investigated in terms of area specific resistance (ASR), thermal expansion coefficient (TEC), thermal cycling and long term performance. $Sm_{0.2}Ce_{0.8}O_{1.9}$ was used as electrolyte material. Electrochemical ac impedance spectroscopy (EIS) and dilatometer were used to measure the cathodic properties. Composite cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$: $Sm_{0.2}Ce_{0.8}O_{1.9}$ = 6:4) showed a good ASR of 0.13${\Omega}$ $cm^2$ at 650$^{\circ}C$ and its TEC value was 12.3${\times}$10-6/K at 600$^{\circ}C$ which is similar to the value of ceria-based electrolyte of 11.9${\times}$10-6/K. Performance of composite cathode was maintained with no degradation even after 13 times thermal cycle test.

  • PDF

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating (펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가)

  • Park, Eon-Woo;Moon, Hwan;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.