Browse > Article

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)  

Vahc, Zuh Youn (Department of Fuel Cell and Hydrogen Technology, Hanyang University)
Yi, Sung Chul (Department of Fuel Cell and Hydrogen Technology, Hanyang University)
Publication Information
Abstract
The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.
Keywords
Direct carbon fuel cell; CFD; Boudouard reaction; Carbon monoxide; Carbon fuel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Katzer, in "The future of coal" (Massachusetts Institute of Technology, 2007) p. 10.
2 C.L. Brierley, in "COAL: Research and Development to Support National Energy Policy" (NRC Report, June 2007) p. 2.
3 S. Giddey, S.P.S. Badwal, A. Kulkarni, C. Munnings, Prog. Energy. Combust. Sci. 38 (2012) 360-399.   DOI
4 T.M. Gur, Chem. Rev. 113 (2013) 6179-6206.   DOI
5 A.C. Rady, S. Giddey, A. Kulkarni, S.P.S. Badwal, S. Bhattacharya, Fuel 180 (2016) 270-277.   DOI
6 J. Mizusaki, J. Tagawa, Solid State Ionics (1992) 126-134.
7 G.O. Lauvstad, R. Tunold, S. Sunde, J. Electrochem. Soc. 149[12] (2002) E497-505.   DOI
8 V. Yurkiv, D. Starukhin, J.R. Volpp. W.G. Bessler, J. Electrochem. Soc. 158 (2011) B5-10.   DOI
9 C.J. Moyer, N.P. Sullivan, H. Zhu, R.J. Kee, J. Electrochem. Soc. 158 (2011) B117-131.   DOI
10 X. Zhao, Q. Yao, S. Ki, N. Cai, J. Power Sources 185 (2008) 104-111.   DOI
11 S.H. Chan, C.F. Low, O.L. Ding, J. Power Sources 103 (2002) 188-200.   DOI
12 W.H.A. Peelen, M. Olivry, S.F. Au, J.D. Fehribach, K. Hemmes, J. Appl. Electrochem. 30 (2000) 1389-1395.   DOI
13 H. Xu, B. Chen, J. Liu, M. Ni, Applied Energy. 178 (2016) 353-362.   DOI
14 J.R. Selman, H.C. Maru, in "Advances in molten salt chemistry" (Plenum Press, 1981) p. 176.
15 N. Nakagawa, M. Ishida, Ind. Eng. Chem. Res. 27 (1988) 1181-1185.   DOI
16 M. Brown, S. Primdahl, M. Mogensen, J. Electrochem. Soc. 147 (2000) 475-485.   DOI
17 Y. Matsuzaki, I. Yasuda, J. Electrochem. Soc. 147 (2000) 1630-1635.   DOI
18 E. Mon, M.R. Amundson, Ind. Eng. Chem. Fundam. 17 (1978) 313-321.   DOI
19 Y. Tang, J. Liu, Int. J. Hydrogen. Energy. 35 (2010) 11188-11193.   DOI
20 C.C. Chen, R. Maruyama, P.H. Hsieh, J.R. Selman, J. Electrochem. Soc. 23 (2010) 227-239.
21 A. Elleuch, A. Boussetta, K. Halouani, J. Electroanal. Chem. 668 (2012) 99-106.   DOI
22 A. Elleuch, J. Yu, A. Boussetta, K. Halouani, Y. Li, Int. J. Hydrogen. Energy 38 (2013) 8514-8523.   DOI
23 O. Costa-Nunes, R.J. Gorte, J.M. Vohs, J. Power Sources. 140 (2005) 241-249.
24 Y. Jiang, A.V. Virkar, J. Electrochem. Soc. 150 (2003) A942-951.   DOI