• Title/Summary/Keyword: solid state culture

Search Result 80, Processing Time 0.032 seconds

Keratin 17 identified by proteomic analysis may be involved in tumor angiogenesis

  • Xu, Yong;Zhang, Su-Zhen;Huang, Can-Hua;Liu, Xin-Yu;Zhong, Zhen-Hua;Hou, Wen-Li;Su, Zi-Fen;Wei, Yu-Quan
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.344-349
    • /
    • 2009
  • Angiogenesis is crucial for solid tumor growth. By secreting angiogenic factors, tumor cells induce angiogenesis. However, targeting these angiogenic factors for cancer therapy is not always successful, suggesting that other factors may be involved in tumor angiogenesis. This work shows that 25 protein spots were differentially expressed by two-dimensional gel electrophoretic analysis when HepG2 cells induced endothelial cell differentiation to tube in vitro, and most of them were upregulated. Twenty-one proteins were identified with MALDITOF-MS, and the other four were identified by LTQ-MS/MS. Keratins were identified as one class of these upregulated proteins. Further study indicated that the expression of keratin 17 in cultured endothelial cells is likely microenvironment regulated, because its expression can be induced by HepG2 cells and bFGF as well as serum in culture media. Increased expression of keratins in endothelial cells, such as keratin 17, may contribute to the angiogenesis induced by HepG2 cells.

The Investigation of Cell Culture Conditions to Maintain Chicken Embryonic Stem Cells as Totipotent Cells

  • Du, Lixin;An, Jing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1102-1107
    • /
    • 2003
  • The ES cell can provide a useful system for studying differentiation and development in vitro and a powerful tool for producing transgenic animalds. To investigate the culture condition of chicken embryonic stem (CES) cells which can retain their multipotentiality or totipotency, three kinds of feeder layer cells, SNL cells, primary mice embryonic fibroblasts (PMEF) cells and primary chicken embryonic fibroblasts (PCEF) cells, were used as the feeder cells in media of DMEM supplemented with leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and stem cell factor (SCF) for co-culture with blastoderm cells from stage X embryos of chicken. The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The results showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The typical CES cells clone shape revealed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong alkaline phosphatase (AKP) reactive cells were observed in the fourth passage cells. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2% (22/269) survived to hatching, 5 feather chimeras had been produced. This suggests that an effective culture system established in this study can promote the growth of CES cells and maintain them in the state of undifferentiated and development, which lays a solid foundation for the application of CES cells and may provide an alternative tool for genetic modification of chickens.

Production of Carrot Pomace Fortified with Mucilage, Fibrinolytic Enzyme and Probiotics by Solid-state Fermentation Using the Mixed Culture of Bacillus subtilis and Leuconostoc mesenteroides

  • Jung, Hye-Won;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • Bioactive compounds were produced from carrot pomace by solid-state fermentation using Bacillus subtilis HA and Leuconostoc mesenteroides. The carrot pomace (CP) fermented by B. subtilis HA with 3% monosodium glutamate (MSG) showed higher production of various bioactive compounds, with 1.64 Pa·sn of consistency, 2.31% of mucilage content, 16.95 unit/g of fibrinolytic enzyme activity, 35.3 unit/g of proteolytic activity and 37.5 mg% of tyrosine content. The mucilage production was greatly dependent upon the concentration of MSG added. Most MSG added in CP was converted into mucilage (2.3%) including 0.83% poly-$gamma$-glutamic acid (PGA) with 1,505 kDa of molecular weight. The CP fermented secondly by Leuc. mesenteroides showed acidic pH and lower consistency. However, the fibrinolytic and proteolytic activities were increased. The secondly fermented CP showed the viable cell counts with $2.5{\time}108$ CFU/g of B. subtilis HA and $3.7{\time}109$ CFU/g of Leuc. mesenteroides, respectively. The freeze-dried fermented CP showed 2.88 Pa·sn of consistency, 24% of mucilage content and 104.9 unit/g of fibrinolytic enzyme activity, respectively. Also, the powder of fermented CP indicated viable cell counts of $8.0{\time}107$ CFU/g of B. subtilis and $4.0{\time}108$ CFU/g of Leuc. mesenteroides. Therefore, the fermented CP that was fortified with dietary fibers, fibrinolytic enzyme and probiotics could be utilized as valuable ingredients of functional foods in food or cosmetic industries.

Some Factors Affecting Glucoamylase Production from Aspergillus sp. (Aspergillus sp.의 Glucoamylase 생산에 미치는 요인)

  • Park, Inshik;Youngho Chung
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.519-523
    • /
    • 1989
  • The effects of carbon, nitrogen sources and culture conditions on glucoamylase production from Aspergillus sp. were investigated. Among tested carbon sources, soluble starch was most effective for the production of the enzyme, and the level of concentration for the optimal enzyme production was found to be 5%. For nitrogen sources, yeast extract was best for the enzyme production, with the level of 0.1%. The enzyme was maximally produced by cultivating the organism at medium of initial pH 6.0, and temperature of 28$^{\circ}C$. Wheat bran was most suitable for the enzyme production from the organism in solid state culture.

  • PDF

Aspochalasin I, a Melanogenesis Inhibitor from Aspergillus sp.

  • Choo, Soo-Jin;Yun, Bong-Sik;Ryoo, In-Ja;Kim, Young-Hee;Bae, Ki-Hwan;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.368-371
    • /
    • 2009
  • In the course of screening for the melanogenesis inhibitors, aspochalasin I was isolated from solid-state culture of Aspergillus sp. Fb020460. Its structure was determined by spectroscopic analysis including mass spectroscopy and NMR analysis. Aspochalasin I potently inhibited melanogenesis in Mel-Ab cells with an $IC_{50}$ value of $22.4{\mu}M$ without cytotoxicity.

Holographic Properties in Amorphous As-Ge-Se-S with Ag Thickness (Ag의 두께에 따른 비정질 As-Ge-Se-S의 홀로그래픽 특성연구)

  • Kim, Chung-Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.213-217
    • /
    • 2012
  • In this study, we have investigated the holographic grating formation on Ag-doped amorphous As-Ge-Se-S thin films. The dependence of diffraction efficiency as afunction of Ag layer thickness has been investigated in this amorphous chalcogenide films. Holographic gratings was formed using [P:P] polarized Diode Pumped Solid State laser (DPSS, 532.0 nm). The diffraction efficiency was obtained by +1st order intensity. The results were shown that the diffraction efficiency of Ag/AsGeSeS double layer thin films for the Ag thickness, the maximum grating diffraction efficiency using 60 nm Ag layer is 0.96%.

A Novel Tannase from the Xerophilic Fungus Aspergillus niger GH1

  • Marco, Mata-Gomez;Rodriguez, Luis V.;Ramos, Erika L.;Renovato, Jacqueline;Cruz-Hernandez, Mario A.;Rodriguez, Raul;Contreras, Juan;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.987-996
    • /
    • 2009
  • Aspergillus niger GH1 previously isolated and identified by our group as a wild tannase producer was grown under solid-state (SSC) and submerged culture (SmC) conditions to select the enzyme production system. For tannase purification, extracellular tannase was produced under SSC using polyurethane foam as the inert support. Tannase was purified to apparent homogeneity by ultrafiltration, anion-exchange chromatography, and gel filtration that led to a purified enzyme with a specific activity of 238.14 IU/mg protein with a final yield of 0.3% and a purification fold of 46. Three bands were found on the SDS-PAG with molecular masses of 50, 75, and 100 kDa. PI of 3.5 and 7.1% N-glycosylation were noted. Temperature and pH optima were 600e and 6.0 [methyl 3,4,5-trihydroxybenzoate (MTB) as substrate], respectively. Tannase was found with a $K_M$ value of $0.41{\times}10^{-4}M$ and the value of $V_{max}$ was $11.03{\mu}$moL/min at $60^{\circ}C$ for MTB. Effects of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were evaluated to establish the novelty of the enzyme. Finally, the tannase from A. niger GH1 was significantly inhibited by PMSF (phenylmethylsulfonyl fluoride), and therefore, it is possible to consider the presence of a serine or cysteine residue in the catalytic site.

Cultural Condition for the Mycelial Growth of Phellinus igniarius on Chemically Defined Medium and Grains (화학합성배지 및 곡물을 이용한 Phellinus igniarius의 균사체 배양조건)

  • Jung, In-Chang;Kim, Seon-Hee;Kwon, Yong-Il;Kim, So-Yeun;Lee, Jong-Suk;Park, Shin;Park, Kyung-Sook;Lee, Jae-Sung
    • The Korean Journal of Mycology
    • /
    • v.25 no.2 s.81
    • /
    • pp.133-142
    • /
    • 1997
  • The chemical media composition and culture conditions were optimized for mycelial growth of Phellinus igniarius 26005. The method of solid-state fermentation, cultivation of basidiomycetal strains in various grains, was developed. Media composition for optimal growth of Phellinus igniarius 26005 was made of 7.0% malt extract, 0.3% bacto soytone, and 0.2% yeast extract. The optimum condition for mycelial growth was $28^{\circ}C$ and pH 7.0, respectively. For the mass cultivation of mycelia, the hydrated grains with cold water, were put into the plastic bottle. The mycelial growth rate in the bottled grains was high in the early stage with inoculation of homogenized mycelium. The activity of mycelium was maintained by adding sterilized water in the middle of cultivation. The glucosamine content which determins the mycelial growth rate in solid material was in the order of job's tears>barley>black soybean>wheat>malt soybean>brown rice>sorghum>glutinous rice.

  • PDF

Evaluation of Radical Scavenging Activity and Physical Properties of Textured Vegetable Protein Fermented by Solid Culture with Bacillus subtilis HA According to Fermentation Time (고초균을 이용한 조직대두단백의 고체 발효 기간에 따른 라디칼 소거 활성 및 물성 평가)

  • Kim, Ji-Eun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Textured vegetable protein (TVP) was fermented by the solid-state fermentation using Bacillus subtilis HA and biologically active compounds were produced by fermentation for 7 days. The longer fermentation time resulted in the color change of fermented TVP with strong dark red and yellow color. Melanoidin production rapidly increased until fermentation for 48 hr, but did change afterwards. The 70% ethanol extract of TVP fermented for 24 hr showed higher DPPH radical scavenging effect with $IC_{50}$ of 0.99 mg/mL but longer fermentation did not increase its activity. Also, 70% ethanol extract of TVP fermented for 72 hr indicated higher ABTS radical scavenging effect with $IC_{50}$ of 1.68 mg/mL. Consistency index in TVP fermented for 48 hr was the highest values with 7.89 $Pa{\cdot}s^n$. Viscoelastic properties of TVP fermented for 48 hr were maximally enhanced, and viscous value (G") is higher than the elastic value (G'). The $\gamma$-polyglutamic acid (PGA) content was increased by increasing fermentation time with 37.72% of $\gamma$-PGA at 168 hr. However, levan content and molecular weight of PGA were decreased with increasing fermentation time from 7.83% to 3.91% and 1649.3 kDa to 1286.8 kDa, respectively.

Applications of Yeast Flocculation in Biotechnological Processes

  • Domingues, Lucilia;Vicente, Antonio A.;Lima, Nelson;Teixeira, Jose A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.288-305
    • /
    • 2000
  • A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects-the basics of yeast flocculation, the development of "new" flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous $\beta$-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculating bioreactors and discussing potential new uses of these systems.e systems.

  • PDF