• Title/Summary/Keyword: solid elements

Search Result 651, Processing Time 0.023 seconds

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Investigation into the Gugak Educational Programs by Museum of Gugak for Invigoration Measures (국악박물관 국악교육프로그램 활성화를 위한 고찰)

  • Moon, Joo-seok
    • (The) Research of the performance art and culture
    • /
    • no.36
    • /
    • pp.327-363
    • /
    • 2018
  • This paper tracks the present state of the Gugak educational programs run by Gugak-specialized museums including Museum of Gugak not only to set a directionality of Museum of Gugak to step forward for their main purposes, but also to find measures to invigorate its Gugak educational programs. There are 826 museums registered in 2016 nationwide, and ten of them are Gugak-specialized museums including Museum of Gugak. An analysis of the educational programs by Museum of Gugak presents high achievements in concentrativeness, participation and satisfaction levels. However, several issues such as difficulty level adjustment, education period arrangement, contents development, setting of a precise aim of education, and overcoming of regional limitations are to be solved in the future. Considering these special circumstances, the study suggests setting a directionality of Gugak education by following four conditions: Firtly, the Gugak education programs by Museum of Gugak should be user-oriented. Secondly, it is necessary to provide customized learning programs to suit users of various ages and generations. Thirdly, a solid education is required to enhance creativity deviating from uniform, unilateral, fragmentary education focused on materials and relics of museums as the users' experiences and learning levels vary. Fourthly, integrated education with relevant study in common use is required as the specialized environments of the museum could cause users psychological resistance and lessen their willingness to approach. Focusing on these four conditions several invigoration measures for the Gugak education programs are discussed: Firstly, a step-by-step approach, not a radical shift, is required in order to turn existing programs into the user-oriented. Secondly, customized learning programs should be planned in consideration of life cycle of the users. Thirdly, it is necessary to establish virtuous circulation reflecting activity-based contents as well as to provide the users experiences through five senses for solid Gugak education, in which various elements such as experiencing, learning, playing, viewing are reflected manifoldly. Fourthly, integrated education can be implemented when the features of Gugak educational programs are internally structured and the external environment matures.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

Physico-chemical Characteristics of used Plug Media and its Effect on Growth Response of Tomato and Cucumber Seedlings (재사용 플러그 상토의 이화학적 특성 및 재사용 상토가 토마토와 오이의 묘소질에 미치는 영향)

  • Byun, Hyo-Jeung;Kim, Young Shik;Kang, Ho-Min;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The objective of the present study is to identify the physico-chemical characteristics of used plug media (UPM) and its effect on growth response of tomato and cucumber seedlings. The UPM from commercial media Mix#5 (Sungro co., Ltd.) was used in this study. This media was sterilized by sterilizer at $120^{\circ}C$ in 30 minutes at 1.5 atm. Physicochemical properties of UPM was compared with new plug media (NPM). Physical properties such as air volume, particle density, solid volume, bulk density were investigated by three phase device (DIK-1130, Japan). And chemical characteristics such as $NO_3$-N, $P_2O_5$, K, Mg, Ca, $SiO_2$, CEC, OM were investigated by soil spectrophotometer (PTIZEN 1412SA, Mecasys Co., Ltd). The result indicates that air volume and water holding capacity of UPM are lower than NPM (25%, 15%, respectively). Bulk density and soil weight are more than two times higher than NPM per unit volume. Compared to NPM, there were no significant different for pH and EC. But CEC of UPM is lower than NPM 40%. In order to compare growth response and ability absorption of inorganic elements by plants, cucumber and tomato seedlings were used and chemical characteristics after growing of mediums were determined. The result indicated that seeding quality of tomato and cucumber in UPM is less than in NPM and almost inorganic ions of UPM are lower than NPM. So it is necessary to improve physicochemical properties of UPM.

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Effect of Mixed Liquid Fertilization on Growth Responses of Cherry Tomatoes and Soil Chemical Properties (생초미생물혼합액비의 시용이 방울토마토의 생육반응과 토양화학성에 미치는 영향)

  • Park, Ji-Suk;Lee, Min-Jin;Lee, Seo-Youn;Kim, Jong-Sung;Lee, Tae-Kyu;Ro, Hee-Myong;Kim, Sang-Jun;Jeon, Seung-Woo;Seo, Sang-Gug;Kim, Kil-Yong;Lee, Geon-Hyoung;Jeong, Byung-Gon
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.268-275
    • /
    • 2015
  • We evaluated the effect of mixed liquid fertilizer (MLF) on growth responses of plants and soil chemical properties. To do so, a pot experiment with cherry tomatoes (Lycopersicon esculentum var. cerasiforme) using loam soil was conducted for 81 days in a temperature-controlled glasshouse, and four N fertilization treatments were laid out in a completely randomized design with three replicates: control (C), chemical fertilizer treatment (CF), and two rates (MLF-0.5 and MLF-1.0) of MLF treatment. Soils were periodically sampled and analyzed for pH, EC, total N, inorganic N and total C, and growth characteristics of cherry tomatoes were measured. During the experimental periods, the pH of MLF soils was higher than that of CF soils. Soil total-N content increased right after CF-application and ultimately decreased to the level of the control (C) soil, while MLF-application slightly increased the level of soil total-N and this level remained unchanged throughout the experiment. The levels of soil inorganic N content increased after application of CF or MLF, but the initial increase disappeared in 56 days after transplanting (DAT). The dry weight of shoots and roots increased in CF or MLF plants, while the number of fruit increased only in MLF plants. Whereas soluble solid contents were higher in MLF plants than in the other (C and CF) plants, the titratable acidity was not different among treatments. However, no consistent effect of N treatments on major elements of the organs of cherry tomatoes was found. The amounts of N taken up by plants were 0.91 g for CF, 0.61 g for MLF-1.0, 0.43 g for MLF-0.5, and 0.25 g for control treatments, resulting in greater N efficiency for CF than for MLF.

Compressive Behavior of Precast Concrete Column with Hollow Corresponding to Hollow Ratio (중공비율에 따른 중공 프리캐스트 철근콘크리트 기둥의 압축거동)

  • Lee, Seung-Jun;Seo, Soo-Yeon;Pei, Wenlong;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.441-448
    • /
    • 2014
  • From several researches, recently, it was found that using hollowed precast concrete (HPC) column made more compact concrete casting in joint region possible than using normal solid PC (Precast concrete) column. Therefore, the rigidity of joints can be improved like those of monolithic reinforced concrete (RC). After filling the hollow with grout concrete, however, it is expected that the HPC column behaviors like composite structure since PC element and grout concrete have different materials as well as there is a contact surface between two elements. These may affect the structural behavior and strength of the composite column. A compressive strength test was performed for the HPC column with parameter of hollow ratio for the case with and without grout in the hollow and the result is presented in this paper. The hollow ratios in the test are 35, 50 and 59% of whole section of column. Concentrated axial force was applied to top of the specimens supported as pin connection for both ends. In addition, finite element (FE) analysis was performed to simulate the failure behavior of HPC column for axial compression. As a result, it was found that the hollow ratio did not affect the initial stiffness of HPC filled with grout regardless of the strength difference of HPC and grout. However the strength was increased inversely corresponding to the hollow ratio. The structural capacity of HPC without grout closely related to the hollow size. Especially, the local collapse governs the overall failure when the thickness of HPC is too thin. Based on these effect, a suitable equation was suggested for calculation of the compressive strength of HPC column with or without grout. FE analysis considering the contact surface between HPC and grout produced a good result matched to the test result.

The Socio-Political Significance of Paleolithic Studies in North Korea (정치·사회적 맥락에 따른 북한 구석기 연구 변화)

  • Lee, Hyeong Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.126-149
    • /
    • 2020
  • Considering significant words that stand for the history of Paleolithic in North Korea, these can be summarized for each decade since the 1960s. The 1960s ought to be when the earliest discovery of a Paleolithic site was made by Korean hands. The 1970s might be the earliest period for textbooks being published that were geared towards increasing general understanding of the Paleolithic era in the Korean peninsula. The 1980s can be summarized as a period of reissued Paleolithic articles from a newly introduced archaeological journal. The 1990s witnessed efforts to formulate nationalistic interpretations about the Paleolithic period in Korea. The 2000s then synthesized several of these aspects of Paleolithic studies. Gulpori, the Paleolithic site that was discovered in the 1960s, holds significance not just because of the discovery itself, but because of its prompt acceptance by North Korean academic authorities. The publications that covered general understanding of Paleolithic archaeology such as Joseon Gogohag Gaeyo, Joseon-ui Guseoggisidae, and Joseonjeonsa: Wonsipyeon in the 1970s hold immense significance themselves, as they demonstrate contemporary achievements. Reintroduction of the archaeological Journal, Joseongogoyeongu in 1986, is the beacon of alleviation of conspicuous effect to the academic sector. During the 1990s, a new emphasis on nationalism influenced Paleolithic studies. In the 2000s, the formally constructed elements of Paleolithic research such as Paleolithic chronology, social evolution, lithic assemblage, Quaternary studies, and human evolution were consistently refined. Metaphorically speaking, these parts are like a polygonal structure. As is the case with a polygonal structure, these research aspects are united and work together. Each part affects the others. Although the content of each research aspect has been altered by either academic growth or sociopolitical agenda, the fundamental part of the polygonal structure is not likely to be changed. The structure is solid enough to continue to serve the purposes of North Korean Paleolithic studies. North Korean Paleolithic archaeology seems to be a juxtaposition; some parts are easily changed while others are not. In order to ascertain these, not only the academic but also the sociopolitical context should be followed.