• Title/Summary/Keyword: solid elements

Search Result 644, Processing Time 0.036 seconds

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Study in Background Reduction for the Neutron Induced Prompt Gamma-ray Spectroscopy

  • Song, Byoung-Chul;Jee, Kwang-Yong;Park, Yong-Joon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.433-433
    • /
    • 2004
  • Neutron induced prompt gamma-ray spectroscopy (NIPS) system measures the prompt gamma-ray, emitting by the interaction of a neutron with various materials. This system will be of great benefit to scientists worldwide, since it provides the non-destructive measurement of many elements in either solid or liquid wastes. A NIPS facility has been developed in Nuclear Chemistry Research Division, at Korea Atomic Energy Research Institute (KAERI) with the aim of analyzing the major component elements in both aqueous and solid samples.(omitted)

  • PDF

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.

Study on an efficient modeling for the impact analysis of a flexible body employing Hertzian contact theory (Hertz 접촉이론을 이용한 탄성체의 충돌 해석을 위한 효율적 모델링에 관한 연구)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.838-843
    • /
    • 2008
  • Since thickness deformation and lateral deflection often occurs during the collision of flexible bodies, they should be considered simultaneously in the impact analysis. The thickness deformation, however, cannot be considered in beam/shell theory since the thickness is assumed to be constant in the theory. So, solid elements are employed to estimate the thickness deformation. However, the CPU time increases significantly if solid elements are employed. In the present study, a modeling method for the impact analysis of a flexible body employing Hertzian contact theory is presented. The efficiency and the accuracy of the modeling method are discussed with some numerical examples.

  • PDF

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Study on the Prediction of the Life-time in the Macroscopic Solid-Solid Interfaces (고체-고체 거시계면의 수명예측에 관한 연구)

  • 박정규;배덕권;정동회;오재한;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.775-778
    • /
    • 2000
  • In this paper, the life-time of macro interface between Epoxy/EPDM which consists in underground power cable joints is predicted. The electrode system of specimen is designed by FEM(finite elements method). The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law, and the long breakdown life time can be evaluated.

  • PDF

Vibration Analysis of a Hollow Crankshaft Supported by Fluid-film Bearing (중공 크랭크축 베어링계의 진동해석)

  • 조윤국;김정수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.333-338
    • /
    • 1997
  • A hollow crankshaft is considered as part of an effort to reduce the weight of the automobile powertrain. Since the resulting mass reduction alters both the inertia and stiffness properties of the crankshaft, the vibration characteristics of the hollow crankshaft needs to be investigated in comparison with the original solid crankshaft. The crankshafts are modeled by 38 lumped mass and stiffness elements, in which the dynamic parameters for each lumped element are obtained by the finite element calculation. The fluid-film bearings supporting the crankshaft give rise to linear spring and damping elements that can be derived from the hydrodynamic bearing model. The transfer matrix method is applied to yield the natural frequencies and mode shapes of the crankshaft vibration. The natural frequencies of the hollow crankshaft are founded to be greater than that of the solid crankshaft, and the incorporation of the bearing stiffness tends to accentuate the difference.

  • PDF

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.