• Title/Summary/Keyword: solid elements

Search Result 646, Processing Time 0.026 seconds

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Preconcentration of Iron(III), Lead(II), Cobalt(II) and Chromium(III) on Amberlite XAD-1180 Resin Loaded with 4-(2-Pyridylazo)-resorcinol (PAR) and Their Determination by FAAS

  • Tokalloglu, Serife;Kartal, Senol
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1293-1296
    • /
    • 2006
  • In this study, a solid phase extraction method has been developed for the preconcentration and separation of the elements Cr(III), Fe(III), Co(II) and Pb(II) at trace levels by using a column packed with Amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) reagent. After preconcentrating, the metals retained on the column were eluted with 20 mL of 3 mol/L $HNO_3$ and then determined by flame atomic absorption spectrometry (FAAS). The factors affecting the recovery of the elements, such as pH, type and concentration of eluent, volume of sample and elution solution, and matrix components, were also ascertained. The recoveries of Cr(III), Fe(III), Co(II) and Pb(II) were found to be $99\;{\pm}\;4,\;97\;{\pm}\;3,\;95\;{\pm}\;3$ and $98\;{\pm}\;4$%, respectively, under the optimum conditions at 95% confidence level and the relative standard deviations found by analyzing of nine replicates were $\leq4.4$%. The preconcentration factors for Cr(III), Fe(III), Co(II) and Pb(II) were found as 75, 125, 50 and 75 respectively. The detection limits (DL, 3s/b) were 3.0 $\mu g/L$ for Cr(III), 1.25 $\mu g/L$ for Fe(III), 3.3 $\mu g/L$ for Co(II), and 7.2 $\mu g/L$ for Pb(II). The recoveries achieved by adding of metals at known concentrations to samples and the analysis results of Buffalo river sediment (RM 8704) show that the described method has a good accuracy. The proposed method was applied to tap water, stream water, salt and street dust samples.

Improvement of the Mechanical Properties of Al-7Si-0.35Mg Cast Alloys by the Optimised Combination of Alloying Elements and Heat Treatment (합금원소 첨가 및 열처리 공정 제어를 통한 Al-7Si-0.35Mg 주조재 합금의 기계적 특성 향상)

  • Cho, Young-Hee;Lee, Jung-Moo;Jin, Jin-Woo;Jung, Jae-Gil
    • Journal of Korea Foundry Society
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Improvement of the mechanical properties of a commercial aluminium casting alloy, A356, was achieved through an optimised combination of alloying elements, modification, and heat treatment. 0.7 wt.% Cu and an additional 0.2 wt.% Mg were added to an Al-7Si-0.35Mg alloy for strengthening at both room and elevated temperatures, whilst a subsequent decrease in the ductility was compensated for by the modification of eutectic Si by Sr addition at a level of up to 110 ppm. It was found that the dissolution of Cu-rich or Mg-rich phases could be maximised by solid-solutionising an alloy with 40 ppm Sr at $530^{\circ}C$, increasing the tensile and yield strengths to 350 MPa and 297 MPa, respectively, with a reasonably high strain of 5% after peak-aging at $210^{\circ}C$. Further addition of Sr up to 110 ppm is, however, more likely to interfere with the dissolution of the Cu-rich or Mg-rich phases during solid solution treatment, resulting in a slight decrease in both tensile and yield strengths at room temperature. Besides the Cu addition, such undissolved phases, on the other hand, may contribute to elevated temperature strength at $200^{\circ}C$.

Determination of major and minor elements in low and medium level radioactive wastes using closed-vessel microwave acid digestion (밀폐형 극초단파 산분해법을 이용한 중${\cdot}$저준위 방사성폐기물의 성분 원소 분석)

  • Lee Jeong-Jin;Pyo Hyung-Yeal;Jeon Jong-Seon;Lee Chang-Heon;Jee Kwang-Yong;Ji Pyung-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • The conditions are obtained for the decomposition of solid radioactive wastes, including ion exchange resin, zeolite, charcoal, and sludge from nuclear power plant. In the process of decomposing the radioactive wastes was used the microwave acid digestion method with mixed acid. The solution after acid digestion by the following method was colorless and transparent. Each solution was analyzed with ICP-AES and AAS and the recovery yield for 5 different elements added into the simulated radioactive wastes were over $94{\%}$. The elemental analysis of destructive low and medium level radioactive wastes by the proposed microwave acid digestion conditions concerning the chemical characteristics of each radioactive waste are expected to be useful basic data for development of optimal glass formulation.

  • PDF

The Development of U-recovery by Continuous Electrorefining (연속식 전해정련에 의한 우라늄 회수기술 개발)

  • Kim, Jeong-Guk;Park, Sung-Bin;Hwang, Sung-Chan;Kang, Young-Ho;Lee, Sung-Jai;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, and the domestic development of electrorefiner have been reviewed. The electrorefiner is composed of an anode basket containing reduced spent fuel such as uranium, transuranic and rare earth elements, and a solid cathode, which are in LiCl-KCl eutectic electrolyte. Oxidation (dissolution) reaction occurs on the anode and a pure uranium is electrochemically reduced (deposited) on the solid cathode. By application of graphite cathode, which has a self-scrapping characteristics for the uranium deposits, and a recovery of the fallen deposits by a screw conveyer, a high-throughput continuous electrorefiner with a capacity of 20 kgU/day has been developed.

Fatigue Fracture Analysis of Curved Pipes Under Cyclic Loading (반복 하중에 의한 곡관의 피로 균열 해석)

  • Jang, Heung Woon;Jung, Jae-Wook;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2016
  • In this study, we numerically analyze fatigue cracks of curved pipes under cyclic loadings. Numerical models of the curved pipes are developed. The models are verified with the experimental results in terms of fatigue lives and development process of the fatigue cracks. Erosion technique is applied to the solid elements in order to describe shapes of the fatigue cracks and estimate the fatigue lives. Also, development of the fatigue cracks is described by allocating sufficient number of solid elements in the radial direction. Fatigue lives and shapes of the crack resulting from numerical analyses show good agreement with those of the experiment considering ${\pm}100mm$ displacement. In addition, estimation of the fatigue life caused by displacement with different magnitude is conducted. We expect that the model can be applied to understand the relation between fatigue lives and characteristics of pipes or loadings.

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • Sin, Yong-Seung;Jang, Hyeon-Sik;Im, Jae-Yeong;Im, Se-Yun;Lee, Jong-Un;Lee, Jae-Hyeon;Wang, Junyi;Heo, Geun;Kim, Tae-Geun;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

A Study on the Thermal Environment Evaluation of 'Hanok' considering Solid Model of Building Elements (한옥의 건축요소 솔리드 모델링을 통한 열환경 평가에 관한 연구)

  • Park, Tong-So;Sheen, Dong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.955-961
    • /
    • 2013
  • This study aimed for the scientific approach of Korean traditional house, so called Hanok, by analyses of structural elements and thermal environmental performance. Hanok is a very unique vernacular architectural style of the Middle East Asia that fits with climate conditions of the Korean Peninsular, designed to withstand high temperature and humidity in summer and cold and dry in winter seasons. In order to evaluate thermal environment of Hanok, its sectional structure such as floor, wall, roof structure and Ondol which is Korean traditional floor heating system, was built in 3D, as well as heat transfer mechanism of its composing elements was analyzed through 3 dimensional steady state analysis. The results of the thermal environmental performance of Hanok will be used as a basic datum of design guidelines for accomplishing ecologic housing fitted with local climate.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.