DOI QR코드

DOI QR Code

Preconcentration of Iron(III), Lead(II), Cobalt(II) and Chromium(III) on Amberlite XAD-1180 Resin Loaded with 4-(2-Pyridylazo)-resorcinol (PAR) and Their Determination by FAAS

  • Tokalloglu, Serife (Department of Chemistry, Faculty of Arts and Sciences, Erciyes University) ;
  • Kartal, Senol (Department of Chemistry, Faculty of Arts and Sciences, Erciyes University)
  • Published : 2006.09.20

Abstract

In this study, a solid phase extraction method has been developed for the preconcentration and separation of the elements Cr(III), Fe(III), Co(II) and Pb(II) at trace levels by using a column packed with Amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) reagent. After preconcentrating, the metals retained on the column were eluted with 20 mL of 3 mol/L $HNO_3$ and then determined by flame atomic absorption spectrometry (FAAS). The factors affecting the recovery of the elements, such as pH, type and concentration of eluent, volume of sample and elution solution, and matrix components, were also ascertained. The recoveries of Cr(III), Fe(III), Co(II) and Pb(II) were found to be $99\;{\pm}\;4,\;97\;{\pm}\;3,\;95\;{\pm}\;3$ and $98\;{\pm}\;4$%, respectively, under the optimum conditions at 95% confidence level and the relative standard deviations found by analyzing of nine replicates were $\leq4.4$%. The preconcentration factors for Cr(III), Fe(III), Co(II) and Pb(II) were found as 75, 125, 50 and 75 respectively. The detection limits (DL, 3s/b) were 3.0 $\mu g/L$ for Cr(III), 1.25 $\mu g/L$ for Fe(III), 3.3 $\mu g/L$ for Co(II), and 7.2 $\mu g/L$ for Pb(II). The recoveries achieved by adding of metals at known concentrations to samples and the analysis results of Buffalo river sediment (RM 8704) show that the described method has a good accuracy. The proposed method was applied to tap water, stream water, salt and street dust samples.

Keywords

References

  1. Camel, V. Spectrochim. Acta, Part B 2003, 58, 1177 https://doi.org/10.1016/S0584-8547(03)00072-7
  2. Ferreira, S. L. C.; Ferreira, J. R.; Dantas, A. F.; Lemos, V. A.; Araujo, N. M. L.; Costa, A. C. S. Talanta 2000, 50, 1253 https://doi.org/10.1016/S0039-9140(99)00230-1
  3. Tokalioglu, S.; Kartal, S.; Elci, L. Bull. Korean Chem. Soc. 2002, 23(5), 693 https://doi.org/10.5012/bkcs.2002.23.5.693
  4. Tokalioglu, S.; Kartal, S.; Elci, L. Anal. Sci. 2000, 16, 1169 https://doi.org/10.2116/analsci.16.1169
  5. Kumar, M.; Rathore, D. P. S.; Singh, A. K. Microchim. Acta 2001, 137, 127 https://doi.org/10.1007/s006040170002
  6. Chakrapani, G.; Murty, D. S. R.; Mohanta, P. L.; Rangaswamy, R. J. Geochem. Explor. 1998, 63, 145 https://doi.org/10.1016/S0375-6742(98)00050-8
  7. Shemirani, F.; Rajabi, M. Fresen. J. Anal. Chem. 2001, 371, 1037 https://doi.org/10.1007/s002160101036
  8. Lee, T.; Choi, H.-S. Bull. Korean Chem. Soc. 2002, 23(6), 861 https://doi.org/10.5012/bkcs.2002.23.6.861
  9. Tokalioglu, S.; Oymak, T.; Kartal, S. Anal. Chim. Acta 2004, 511, 255 https://doi.org/10.1016/j.aca.2004.02.015
  10. Brajter, K.; leszy ska, E. O.; Sta kiewicz, M. Talanta 1988, 35, 65 https://doi.org/10.1016/0039-9140(88)80015-8
  11. Ferreira, S. L. C.; de Brito, C. F.; Dantas, A. F.; Lemos, V. A.; de Araujo, N. M. L.; Costa, A. C. S. Talanta 1999, 48, 1173 https://doi.org/10.1016/S0039-9140(98)00339-7
  12. Guo, Y.; Din, B.; Liu, Y.; Chang, X.; Meng, S.; Tian, M. Anal. Chim. Acta 2004, 504, 319 https://doi.org/10.1016/j.aca.2003.10.059
  13. Ramesh, A.; Mohan, K. R.; Seshaiah, K. Talanta 2002, 57, 243 https://doi.org/10.1016/S0039-9140(02)00033-4
  14. Merdivan, M.; Duz, M. Z.; Hamamci, C. Talanta 2001, 55, 639 https://doi.org/10.1016/S0039-9140(01)00476-3
  15. Atanasova, D.; Stefanova, V.; Russeva, E. Talanta 1998, 45, 857 https://doi.org/10.1016/S0039-9140(97)00175-6
  16. Ensafi, A. A.; Khayamian, T.; Karbasi, M. H. Anal. Sci. 2003, 19, 953 https://doi.org/10.2116/analsci.19.953
  17. Zaporozhets, O.; Petruniock, N.; Bessarabova, O.; Sukhan, V. Talanta 1999, 49, 899 https://doi.org/10.1016/S0039-9140(99)00085-5
  18. Tokalioglu, S.; Kartal, S.; Elci, L. Anal. Sci. 1994, 10(5), 779 https://doi.org/10.2116/analsci.10.779
  19. Tokalioglu, S.; Kartal, S.; Elci, L. Mikrochim. Acta 1997, 127, 281 https://doi.org/10.1007/BF01242736
  20. Sandell, E. B.; Onishi, H. Photometric Determination of Traces of Metals; John Wiley and Sons: New York, Chichester, Brisbane, Toronto., 1978; p 481

Cited by

  1. Coprecipitation with Cu(II)-4-(2-Pyridylazo)-resorcinol for Separation and Preconcentration of Fe(III) and Ni(II) in Water and Food Samples vol.39, pp.3, 2011, https://doi.org/10.1002/clen.201000394
  2. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron vol.2013, pp.2314-4874, 2013, https://doi.org/10.1155/2013/897343
  3. New Sorbents for Solid-Phase Extraction for Metal Enrichment vol.35, pp.6, 2007, https://doi.org/10.1002/clen.200700130
  4. Atomic spectrometry update. Environmental analysis vol.23, pp.2, 2008, https://doi.org/10.1039/b718954k
  5. Atomic absorption spectrometric determination of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions in water, fertilizer and tea samples after preconcentration on Amberlite XAD-1180 resin loaded with l-(2-pyridylazo)-2-naphthol vol.64, pp.6, 2009, https://doi.org/10.1134/S1061934809060124
  6. A review on applications of nanoparticles for the preconcentration of environmental pollutants vol.19, pp.44, 2009, https://doi.org/10.1039/b901933b
  7. Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column vol.70, pp.4, 2006, https://doi.org/10.1016/j.saa.2007.09.007
  8. Separation/preconcentration of trace Pb(II) and Cd(II) with 2-mercaptobenzothiazole impregnated Amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry vol.10, pp.1, 2006, https://doi.org/10.1016/j.arabjc.2013.04.017
  9. Lead Assays with Smartphone Detection Using a Monolithic Rod with 4-(2-Pyridylazo) Resorcinol vol.26, pp.18, 2006, https://doi.org/10.3390/molecules26185720