• Title/Summary/Keyword: solid catalyst

Search Result 313, Processing Time 0.027 seconds

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Effect of Butadiene in Catalytic Trimerization of Isobutene Using Commercial C4 Feeds

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Lee, Ji-Sun;Kim, Tae-Jin;Lee, Hee-Du;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Catalytic oligomerization of isobutene to produce triisobutenes has been performed over a cation-exchange resin (Amberlyst-35) by using commercial C4 feeds. The catalytic activity in the oligomerization was retained without deactivation up to 90 h of reaction in a simulated reaction feed without butadiene, but its activity was significantly affected by the presence of butadiene in commercial C4 feeds. The isobutene conversion with time-on-stream was significantly decreased in the presence of butadiene, indicating the catalyst deactivation by butadiene. However, the stable activity for trimerization was accomplished when the oligomerization was carried out after eliminating butadiene by hydrogenation of the feeds. This work demonstrates that butadiene plays a role as a catalyst poison on the solid acid catalyst, so that its removal in the reactant feed is essential for practical application of trimerization.

Synthesis, Characterization and Catalytic Evaluation of Zinc Fluorides for Biodiesel Production

  • Indrayanah, Sus;Marsih, I Nyoman;Murwani, Irmina Kris
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • The potential of zinc fluorides with different molar ratios of Zn/F was applied as a solid catalyst in the simultaneous reaction of transesterification and esterification of crude palm oil (CPO) for biodiesel production. These materials were prepared by the fluorolytic sol-gel technique with different fluorine contents. The resulting samples were investigated using elemental analysis, XRD, FT-IR, TG/DTG, $N_2$ physisorption measurements and SEM. The results exhibited that the presence of fluorine strongly affected the catalytic activity in the biodiesel production. The catalysts with smaller fluorine contents (${\leq}1$) showed the best performance in all of the observed samples, yields from 92.94 to 89.95, 87.38 and 85.21% with increasing fluorine contents, respectively. The yield toward the formation of biodiesel depended on the phase and particle sizes of catalysts, but it was not influenced by surface area, pore size, and volume of the samples. The recovered catalyst showed a gradual decrease in activity over three cycles of same reactions.

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

Liquid-phase Dehydration of 1-Phenylethanol to Styrene over an Acidic Resin Catalyst

  • Khan, Nazmul Abedin;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1327-1330
    • /
    • 2011
  • Dehydration of 1-phenylethanol to produce styrene has been studied in liquid phase with three solid acid catalysts such as H-ZSM-5, H-Y and Amberlyst-15. Amberlyst-15 shows the highest conversion and styrene yield, suggesting the applicability of a resin catalyst in the dehydration. The good performance of the Amberlyst-15 may be due to high acid concentration and ready diffusion of reactants and products. A possible reaction scheme (such as the formation of styrene from diphenylethylether) has also been suggested.

Trimerization of Isobutene over Solid Acid Catalysts: Comparison between Cation-exchange Resin and Zeolite Catalysts

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.339-341
    • /
    • 2008
  • Catalytic trimerization of isobutene to produce triisobutenes has been performed over cation-exchange resin and zeolite catalysts. Resin catalysts have the advantage of long lifetime and high trimers selectivity even though the regeneration of an aged catalyst is not satisfactory. On the contrary, zeolite catalysts can be regenerated facilely by simple calcination in air even though the lifetime is short and trimers selectivity is low probably due to small pore size and strong acidity, respectively. It is, therefore highly desirable to develop an inorganic acid catalyst with macro- or meso-pores to show catalytic performances similar or superior to those of macroporous resin catalysts.

Curing Behavior by Rotation Rheometer of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 Rotation Rheometer에 의한 경화거동 연구)

  • Yang, In-Mo;Jung, Choong-Ho;Kim, Tae-Ok;Park, Hong-Soo;Park, Eun-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.

A Study on Oxidative Decomposition of CFC-113 over TiO2-SiO2 Catalysts Prepared by the Sol-Gel Method (솔-젤법으로 제조된 TiO2-SiO2 촉매상에서 CFC-113의 산화분해반응에 관한 연구)

  • Chang, Won-Chul;Lee, Doo-Hyoung;Lee, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.963-968
    • /
    • 1999
  • The global environmental problems have been caused by the release of CFCs. Therefore, methods for safe destruction of recoverd CFCs will be eventually needed. The objective of this study was to develop and test a catalyst operating at a mild condition for the decomposition of CFC-113. In this work, catalytic oxidative decomposition of CFC-113 was carried out over aerosol $TiO_2/SiO_2(ATS)$ catalysts prepared by the sol-gel method. All ATS catalysts(Ti/Si mol ratio=1, 2, 2.33, 4) showed high initial activity. However, the deactivation of ATS catalysts was found that more remarkable due to an attack of fluorine and the destruction of ATS structure(Si-F reaction) from analyses of SEM-EDX, XRD than $TiO_2/SiO_2(ATS)$ catalyst prepared by the precipitation method. ATS catalysts prepared by more acidic prehydrolysis condition were found to have still more activity and longer life-time by increasing of acidity. The activity of ATS catalyst also depend on the content of $TiO_2$. There was reason that the acidity of the ATS catalyst was increased with the increased content of $TiO_2$ from 50 to 80 mol %. Solid superacid catalyst ($ATX/SO_4{^{2-}}$) modified with $H_2SO_4$ solution was prepared for high activity and lower deactivation. The reaction of $ATS/SO_4{^{2-}}$ catalyst also exhibited even higher activity and lower deactivation than the original ATS catalyst. It is suggested that the addition of the sulphate species clearly inhibit the deactivation.

  • PDF