• 제목/요약/키워드: solid/fluid interaction

검색결과 117건 처리시간 0.054초

ALE 기반의 고체 로켓 내부 유체-구조 연동 해석 (ALE-BASED FSI SIMULATION OF SOLID PROPELLANT ROCKET INTERIOR)

  • 한상호;민대호;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.71-77
    • /
    • 2010
  • As a hybrid model of continuum motion description which combines the advantages of classical kinematical descriptions i.e. Lagrangian and Eulerian description, the ALE (Arbitrary Lagrangian Eulerian) description is adopted for the simulation of a fluid-structure interaction of solid propellant rocket interior. The fluid-structure interaction phenomenon with the deformation of solid domain during the simulation. The developed solver is applied flow and propellant structure. The computed results show complex flow physics in the combustion chamber and the behavior of a solid propellant deformation.

  • PDF

고체 로켓 내부 그레인 유체-구조-연소 통합 해석 (ALE based Fluid-Structure-Interaction Simulation of Solid Propellant Rocket)

  • 한상호;최희성;민대호;황찬규;김종암
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문은 유동과 구조물간의 상호작용으로 인해 유체나 구조, 한 쪽 분야에서의 접근으로는 한계가 있는 고체 로켓 내부 유동-구조-연소 결합 문제를 해결하기 위해 FSI를 이용한 전산해석을 목적으로 한다. ALE(Arbitrary Lagrangian Eulerian) 기술 방식을 도입하여 계산 격자의 움직임을 허용하면서도 격자에 대한 연속체 입자의 상대운동이 가능하도록 하였다. 유체 영역의 해석 프로그램은 2차원 압축성 비정상 유동 해석을 위한 오일러 방정식을 ALE 형태를 변형시켜 적용 하였고, 고체 영역의 해석 프로그램은 ALE를 고려한 2차원 동적 유한 요소 방법을 사용하였다.

  • PDF

산업용 로 내 고체 미립자의 거동 예측을 위한 유동-고체입자 간 비산에 관한 실험과 해석 (Experimental and computational study on fluid flow-solid particles interaction associated with entrainment behavior of the particles in the industrial furnaces)

  • 이후경;엄민제;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.93-96
    • /
    • 2012
  • In the industrial furnaces or reactors, entrainment of the material particles is one of the important issues from the point of view of efficient material-use. The particles of solid phase which has submicron unit are easily entrained with gas phase as a reacting agent or product, and it causes a loss of the material. In this study, wind-tunnel experiment is carried out to interpret the distribution of the particles entrained along the tunnel length. Through CFD-based computational analysis of the experiment, availability of result from the CFD analysis associated with particle size distribution and gaseous velocity to practical system is evaluated.

  • PDF

점성 유동장에서 운동하는 구조체의 유탄성 해석 (Fluid-Structure Interaction Analysis for Structure in Viscous Flow)

  • 노인식;신상묵
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구 (A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing)

  • 김병탁
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF

고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면) (Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects))

  • 황찬규
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.286-290
    • /
    • 2008
  • 본 논문은 고체 추진 로켓의 연소 중에 발생하는 고체추진체의 동적 파괴 현상 및 유체-구조 상호작용을 시뮬레이션 하기 위한 프로그램 개발에 대한 것이다. 개발된 프로그램은 구조해석을 위한 CVFE (cohesive Volumetric Finite Element) 방법과 외재적 ALE (Arbitrary Lagrangian Eulerian) 방법을 응용한 유한요소법 코드와 유동해석을 위한 외재적 비정렬 유한 체적 오일러 코드(Explicit Unstructured Finite Volume Euler code)로 구성된다. 개발된 프로그램의 또 다른 중요한 특징은 균열의 전파와 고체추진체의 변형에 따라 생기는 추진제 형상의 대변형이 발생할 때, 새로 생긴 유체 영역에서의 격자의 확장과 복구되는 능력이다.