Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2019.07.003

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force  

Lee, Sangmin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Hong, Jung-Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.12, no.1, 2020 , pp. 85-101 More about this Journal
Abstract
The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.
Keywords
Smoothed Particle Hydrodynamics (SPH); Finite Element Method (FEM); Fluid-structure Interaction (FSI); Wave force; Smoothing length effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barreiro, A., Crespo, A.J.C., Dominguez, J.M., Gomez-Gesteira, M., 2013. Smoothed particle hydrodynamics for coastal engineering problems. Comput. Struct. 120, 96-106.   DOI
2 Bathe, K.J., 2006. Finite Element Procedures.
3 Bea, R., Xu, T., Stear, J., Ramos, R., 1999. Wave forces on decks of offshore platforms. J. Waterw. Port, Coast. Ocean Eng. 125 (3), 136-144.   DOI
4 Boyd, R., Royles, R., El-Deeb, K., 2000. Simulation and validation of undex phenomena relating to axisymmetric structures. In: 6th International LS-DYNA Users Conference Simulation, pp. 9-11.
5 Chella, M.A., Torum, A., Myrhaug, D., 2012. An overview of wave impact forces on offshore wind turbine substructures. Energy Procedia 20, 217-226.   DOI
6 Chun, I., Woo, C., Navaratnam, C.U., Shim, J., 2016. Design wave condition and structural analysis for jacket structures installed in wave breaking zone. In: The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
7 Clauss, G., Lehmann, E., Ostergaard, C., 1992. Offshore Structures - Conceptual Design and Hydromechanics, vol. 1. Springer.
8 Crespo, A.J.C., Gomez-Gesteira, M., Dalrymple, R.A., 2007. Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua(CMC) 5 (3), 173-184.
9 Cruz, A.M., Krausmann, E., 2008. Damage to offshore oil and gas facilities following hurricanes katrina and rita: an overview. J. Loss Prev. Process. Ind. 21 (6), 620-626.   DOI
10 Cummins, S.J., Silvester, T.B., Cleary, P.W., 2012. Threeedimensional wave impact on a rigid structure using smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 68 (12), 1471-1496.   DOI
11 Dalrymple, R.A., Knio, O., 2001. Sph modelling of water waves. In: Proceedings of 4th Conference on Coastal Dynamics, vol. 01. ASCE, pp. 779-787.
12 Grimaldi, A., Benson, D., Marulo, F., Guida, M., 2011. Steel structure impacting onto water: coupled finite element-smoothed-particle-hydrodynamics numerical modeling. J. Aircr. 48 (4), 1299-1308.   DOI
13 Wang, L., Khayyer, A., Gotoh, H., Jiang, Q., Zhang, C., 2019. Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme. Appl. Ocean Res. 86, 320-339.   DOI
14 Fourey, G., Hermange, C., Le Touze, D., Oger, G., 2017. An efficient fsi coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput. Phys. Commun. 217, 66-81.   DOI
15 Gigold, R.A., Monaghan, J.J., 1977. Smoothed particle hyrodynamics: theory and application to non spherical star. Mon. Not. R. Astron. Soc. 181 (3), 375-389.   DOI
16 Gomez-Gesteira, M., 2013. SPHERIC SPH Benchmark Test Cases: Test 1-force Exerted by a Schematic 3D Dam Break on a Square Cylinder.
17 Gomez-Gesteira, M., Dalrymple, R.A., 2004. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J. Waterw. Port, Coast. Ocean Eng. 130 (2), 63-69.   DOI
18 Gomez-Gesteira, M., Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Dominguez, J.M., Barreiro, A., 2012. Sphysics e development of a free-surface fluid solver e part 2: efficiency and test cases. Comput. Geosci. 48, 300-307.   DOI
19 Gotoh, H., Khayyer, A., 2018. On the state-of-the-art of particle methods for coastal and ocean engineering. Coast Eng. J. 60 (1), 79-103.   DOI
20 Hallquist, J.O., 2006. LS-DYNA Theory Manual.
21 Hallquist, J.O., 2007. Ls-dyna Keyword User's Manual. Livermore Software Technology Corporation.
22 Hong, J.W., Bathe, K.J., 2005. Coupling and enrichment schemes for finite element and finite sphere discretizations. Comput. Struct. 83 (17-18), 1386-1395.   DOI
23 Johnson, G.R., Beissel, S.R., 1996. Normalized smoothing functions for sph impact computations. Int. J. Numer. Methods Eng. 39 (16), 2725-2741.   DOI
24 Khayyer, A., Tsuruta, N., Shimizu, Y., Gotoh, H., 2019. Multi-resolution mps for incompressible fluid-elastic structure interactions in ocean engineering. Appl. Ocean Res. 82, 397-414.   DOI
25 Kettle, A.J., 2015. Storm britta in 2006: offshore damage and large waves in the north sea. Natural Hazards & Earth System Sciences Discussions 3 (9).
26 Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. An enhanced isphesph coupled method for simulation of incompressible fluideelastic structure interactions. Comput. Phys. Commun. 232, 139-164.   DOI
27 Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluidstructure interaction. J. Hydrodyn. 30 (1), 49-61.   DOI
28 Koshizuka, S., Oka, Y., 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (3), 421-434.   DOI
29 Lee, J., Liu, W., Hong, J.-W., 2016. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int. J. Impact Eng. 87, 108-119.   DOI
30 Li, Z., Leduc, J., Nunez-Ramirez, J., Combescure, A., Marongiu, J.-C., 2015. A nonintrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput. Mech. 55 (4), 697-718.   DOI
31 Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A., 1993. High strain Lagrangian hydrodynamics: a three-dimensional sph code for dynamic material response. J. Comput. Phys. 109 (1), 67-75.   DOI
32 Attaway, S., Heinstein, M., Swegle, J., 1994. Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Eng. Des. 150 (2), 199-205.   DOI
33 Liu, W., Hong, J.W., 2012. Discretized peridynamics for linear elastic solids. Comput. Mech. 50 (5), 579-590.   DOI
34 Liu, W., Hong, J.W., 2012. Discretized peridynamics for brittle and ductile solids. Int. J. Numer. Methods Eng. 89 (8), 1028-1046.   DOI
35 Acrylic, Plaxiglas G., 2013. Sheet, Tech. Rep. Arkema group technical report.
36 Arnason, H., 2005. Interactions between an Incident Bore and a Free-Standing Coastal Structure. Ph.D. thesis. University of Washington.
37 Arroyo, M., Ortiz, M., 2006. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Methods Eng. 65 (13), 2167-2202.   DOI
38 Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (12), 1013.   DOI
39 Liu, W., Hong, J.W., 2012. A coupling approach of discretized peridynamics with finite element method. Comput. Methods Appl. Mech. Eng. 245, 163-175.   DOI
40 Liu, M.B., Liu, G.R., 2010. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17 (1), 25-76.   DOI
41 Monaghan, J.J., 1994. Simulating free surface flows with sph. J. Comput. Phys. 110, 399-406.   DOI
42 Monaghan, J.J., Kos, A., 1999. Solitary waves on a cretan beach. J. Waterw. Port, Coast. Ocean Eng. 125 (3), 145-154.   DOI
43 Morison, J.R., O'brien, M.P., Johnson, J.W., 1950. The force exerted by surface waves on piles. J. Pet. Technol. 2 (5), 149-154.   DOI
44 Roque, C., Ferreira, A., Reddy, J., 2011. Analysis of timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49 (9), 976-984.   DOI
45 Vandiver, J.K., et al., 1977. Detection of structural failure on fixed platforms by measurement of dynamic response. J. Pet. Technol. 29 (3), 305-310.   DOI
46 Sarpkaya, T., 2010. Wave Forces on Offshore Structures. Cambridge university press.
47 Silvester, T.B., Cleary, P.W., 2006. Wave-structure interaction using smoothed particle hydrodynamics. In: Fifth International Conference on CFD in the Process Industries, pp. 13-15.
48 Sumer, B.M., Fredsoe, J., 2006. Hydrodynamics Around Cylindrical Structures (Revised Edition) 26.
49 Vuyst, T.D., Vignjevic, R., Campbell, J., 2005. Coupling between meshless and finite element methods. Int. J. Impact Eng. 31 (8), 1054-1064.   DOI