• Title/Summary/Keyword: sole carbon source

Search Result 461, Processing Time 0.027 seconds

Microbial Peoduction of Riboflavin Using Riboflavin Overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: An Overview

  • Lim, Seong-Han;Park, Jong-Soo;Park, Enoch Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.75-88
    • /
    • 2001
  • In this paper, the microbial production of riboflavin is reviewed and includes descriptions of riboflavin overproducers, and the biosynthesis and details of the key-enzyme genes related to riboflavin. There kinds of riboflavin overproducers are known; Bacillus subtilis and Candida famate utilize glucose as a carbon source, but the fungus Ashbya gossypii requires plant oil as its sole carbon source. The starting material in ribofalvin biosynthesis is guanosine triphospate (GTP), which is converted to riboflavin through six enzymatic reactions. Though Bacillus subtilis, Candida famate, and Ashbya gossypii operate via different pathways until GTP, they follow the same pathway from GTP to riboflavin. From the metabolic viewpoint, with respect to improved riboflavin production, the supplementation of GTP, aprocess-limiting precursor must be considered. The GTP fluxes originate from three sources, serine, threonine and glyoxylate cycles. The development of pathways to strengthen GTP supplementation using biotechnological techniques remains an issue fro future research.

  • PDF

Biodegradation of Low-Density Polyethylene by Acinetobacter guillouiae PL211 Isolated from the Waste Treatment Facility

  • Ye-Jin Kim;Jang-Sub Lee;Jeong-Ann Park;Hyun-Ouk Kim;Kwang Suk Lim;Suk-Jin Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.189-194
    • /
    • 2024
  • Plastics are consistently produced owing to their practicality and convenience. Unmanaged plastics enter the oceans, where they adversely impact marine life, and their degradation into nano-plastics due to sunlight and weathering is of concern for all living beings. Nano-plastics affect humans via the food chain, emphasizing the necessity for effective solutions. Microbial biodegradation has been suggested as a solution, offering the advantages of minimal environmental impact and the utilization of decomposition byproducts in microbial metabolic pathways. In this study, fifty-seven bacterial strains were isolated and identified from a waste-treatment facility. Cultivation in a minimum medium with low-density polyethylene (LDPE) beads as the sole carbon source resulted in the selection of the LDPE-degrading strain Acinetobacter guillouiae PL211. The selected strain was cultured at high cell density with LDPE as a carbon source, and Fourier transform infrared (FT-IR) analysis confirmed chemical changes on the LDPE bead's surface. Field-emission scanning electron microscopy (FE-SEM) analysis revealed substantial biodegradation of the LDPE surface. These results demonstrated the capability of A. guillouiae PL211 to biodegrade LDPE beads. This discovery demonstrates the potential of an environmentally friendly process to addressing polyethylene waste issues.

Efficient Expression of a Carbon Starvation Promoter Activity Under Nutrient-Limited Chemostat Culture

  • KIM DAE-SUN;PARK YONG-IL;LEE HYANG BURM;KIM YOUNGJUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.678-682
    • /
    • 2005
  • The promoter region of a carbon starvation gene isolated from Pseudomonas putida was cloned and analyzed for its potential use for in situ bioremediation and bioprocessing. We constructed a recombinant plasmid pMKD101 by cloning the 0.65 kb promoter region of the gene into the promoter proving vector, pMK301, which contains the lacZ for ${\beta}$-galactosidase activity as a reporter gene. pMKD101 was transformed into the wild-type P. putida MK1, resulting in P. putida RPD101, and analyzed for ${\beta}$-galactosidase activity under different culture conditions. When RPD101 was grown on the minimal medium plus $0.1\%$ glucose as a sole carbon source in batch cultures, ${\beta}$-galactosidase activity was found to be 3.2-fold higher during the stationary phase than during the exponential phase. In chemostat cultures, ${\beta}$-galactosidase activity was found to be 3.1-fold higher at the minimal growth rate (dilution rate=$0.05\;h^{-1}$) than at the maximal growth rate (dilution rate=$0.173;h^{-1}$). The results suggest that a carbon starvation promoter can be utilized to maximize the expression of a desired gene under nutrient limitation.

Ethanol Fermentation by Pichia Stipitis in a Mixture of Pentoses and Hexoses (오탄당과 육탄당의 혼합용액에서 Pichia stipitis에 의한 에탄올 발효)

  • 정봉환;유연우서진호
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.395-399
    • /
    • 1994
  • P. stipitis CBS5776 was cultivated to examine the characteristics of ethanol fermentation for hexoses (mannose, g1ucose, and galactose) and pentoses(xylose and arabinose). Glucose was the best carbon source among the sugars used in terms of ethanol yield. Glucose was used to produce ethanol with an yield coefficient 0.376g ethanol/g glucose, whereas mannose was converted to produce ethanol with an yield coefficient 0.326g ethanol/g mannose. P. stipitis CBS5776 was also grown in a mixture of sugars to study the pattern of carbon utilization. The yeast utilized glucose and mannose firsts and then galastose and xylose as carbon sources. Arabinose was partially used for biomass when it was present as a sole carbon source, but it was not metabolized at all in a mixture of carbon sources. P. stipitis produced $12.2g/\ell$ ethanol with a yield coefficient 0.332 g ethano1/g sugar in a mixture of sugars.

  • PDF

Physiological and Genetic Factors Controlling Streptomyces Regulatory Gene Expression Involved in Antibiotic Biosynthesis

  • Kim Eung Su
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.68-72
    • /
    • 2002
  • While the biosynthetic gene cluster encoding the pigmented antibiotic actinorhodin is present in the two closely related bacterial species, Streptomyces lividans and Streptomyces coelicolor, it normally is expressed only in S. coelicolor---generating the deep blue colonies responsible for the S. coelicolor name. However, multiple copies of the afsR2 gene, which activates actinorhodin synthesis, result in the ability of S. lividansto also synthesize large amounts of actinorhodin. Here we report that the phenotypic property that historicially distinguishes these two Streptomycesspecies is determined conditionally by the carbon source used for culture. Whereas growth on glucose repressed actinorhodin production in S. lividans, culture on solid media containing glycerol as the sole carbon source dramatically increased the expression of afsR2 mRNA---leading to extensive actinorhodin synthesis by S. lividansand obliterating its phenotypic distinction from S. coelicolor. afsR2 transcription under these conditions was developmentally regulated, rising sharply at the time of aerial mycelium formation and coinciding temporally with the onset of actinorhodin production. Our results, which identify media-dependent parallel pathways that regulate actinorhodin synthesis in S. lividans, demonstrate carbon source control of actinorhodin production through the regulation of afsR2 mRNA synthesis. The nucleotide sequences of afsR2 revealed two putative important domains; the domain containing direct repeats in the middle and the domain homologous to sigma factor sequence in the C-terminal end. In this work, we constructed various sized afsR2-derivatives and compared the actinorhodin stimulating effects in S. lividans TK21. The experimental data indicate that the domain homologous to sigma factor sequence in the C-terminal end of afsR2 plays a critical role as an antibiotic stimulating function. In addition, we also observed that the single copy integration of afsR2 regulatory gene into S. lividans TK21 chromosome significantly activates antibiotic overproduction.

  • PDF

CO Fermentation of Eubacterium limosum KIST612

  • Chang, In-Seop;Kim, Do-Hee;Kim, Byung-Hong;Shin, Pyong-Kyun;Sung, Ha-Chin;Lovitt, Robert W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.134-140
    • /
    • 1998
  • Eubacterium limosum KIST612 was cultured on phosphate-buffered basal medium (PBBM) with carbon monoxide (CO) as the sole energy and carbon source. The initial growth rate of this strain was approximately 0.17~0.25 $h^-1$/ and the $K_s$ value for dissolved substrate was 0.14 mM. CO was limiting during the growth of the bacterium when the CO partial pressure was less than 0.6 atm (0.5 mM dissolved CO). The bacterial growth rate was reduced in the presence of acetate. When sufficient CO was supplied using a gas-lift reactor, the acetate concentration went up to 90 mM in 116 h. Based on these findings, it is suggested that a pressurized reactor be used to develop a process to convert CO-rich gases into multi-carbon compounds.

  • PDF

Nocardia orientalis 변이주에 의한 고농도 혼합당을 이용한 반코마이신 생산

  • 김창호;고영환;고중환
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.404-407
    • /
    • 1996
  • The effects of carbon sources on vancomycin production were investigated using Nocardia orientalis CSVC 3300. Among carbon sources tested, glucose, maltose and fructose were effective for the production of vancomycin. Glucose was favored for growth, but decrease the production of vancomycin at the concentration above 7.5%. In comparison, maltose did not decrease the production of vancomycin up to the concentration of 20%. When the mixture of glucose and maltose was used in the ratio 1:3 to 1:4, the highest production of vancomycin was achieved. When glucose concentration was set at 3.0%, catabolite repression could not be observed up to total sugar concentration of 16.0%. Fermentation was carried out using commercial hydrolyzed starch composed of glucose, maltose, maltotriose and maltotetraose, The initial glucose concentration was set at 3.0% and subsequent oligosaccharide consumption was monitored by checking their supernatant with HPLC. During initial cultivation for 38 hour, glucose was the sole carbon source leading to rapid growth. After cell growth stopped, the maltose and glucose concentrations increased due to degradation of maltotriose and maltotetraose, but glucose level was maintained at around 3.0%. After 70 hour fermentation, maltose slowly converted to glucose, and vancomycin production continued during the period.

  • PDF

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

Identification of Octopine Type Ti Plasmid in Agrobacterium tumefaciens KU12 (Agrobacterium tumefaciens KU12내에 존재하는 Octopine Type Ti Plasmid의 확인)

  • 이용욱;음진성;심웅섭
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.292-299
    • /
    • 1993
  • Agrobacterium tumefaciens KU12 isolated from Korea is able to induce tumors on various plants and catabolize octopine as a sole carbon and nitrogen source. A, tumefaciens KU12 contains three plasmids. Their sizes are 45.5 kb. 240 kb. and > 240 kb. respectively. For the purpose of identification of octopine type Ti plasmid, avirulent A, tumefacients A136 is transformed with plasmids isolated from KU12 by direct transformation. Transformants containing Ti plasmid were grown on AB medium containing octopine as a sole nitrogen source. The isolated strain, named KU911, contains only 240 kb plasmid. As a result of induction of crown gall and Southern hybridization with other octopine Ti plasmid pTiAch5, 240 kb plasmid named pTiKU12 was Ti plasmid.

  • PDF

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.