Microbial Peoduction of Riboflavin Using Riboflavin Overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: An Overview

  • Lim, Seong-Han (Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University) ;
  • Park, Jong-Soo (Laboratory of Fermentation, R&D Center, BASF Co. Ltd.) ;
  • Park, Enoch Y. (Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University)
  • Published : 2001.03.01

Abstract

In this paper, the microbial production of riboflavin is reviewed and includes descriptions of riboflavin overproducers, and the biosynthesis and details of the key-enzyme genes related to riboflavin. There kinds of riboflavin overproducers are known; Bacillus subtilis and Candida famate utilize glucose as a carbon source, but the fungus Ashbya gossypii requires plant oil as its sole carbon source. The starting material in ribofalvin biosynthesis is guanosine triphospate (GTP), which is converted to riboflavin through six enzymatic reactions. Though Bacillus subtilis, Candida famate, and Ashbya gossypii operate via different pathways until GTP, they follow the same pathway from GTP to riboflavin. From the metabolic viewpoint, with respect to improved riboflavin production, the supplementation of GTP, aprocess-limiting precursor must be considered. The GTP fluxes originate from three sources, serine, threonine and glyoxylate cycles. The development of pathways to strengthen GTP supplementation using biotechnological techniques remains an issue fro future research.

Keywords

References

  1. [Online] STunning achievements of industrial microbiology Demain A.L.
  2. Advances in Biotechnology v.3 Vitamin fermentations B₂ and B12 Lago B.D;L. Kaplan;M. Moo Young(eds.)
  3. J. Chem. Tech. Biotechnol. v.53 Production of vitamins, coenzymes and related biochemicals by biotechnological processes Vandamme E.J.
  4. Appl. Microbiol. Biotechnol. v.53 Three biotechnical processes using Ashbya gossypii, Candida famate, or Bacillus subtilis compete with chemical riboflavin production Stamann K.-P.;J.L. Revuelta;H. Seulberger
  5. Arch. Biochem. v.8 The inactivation of iron by 2,2'bipyrimidine and its effect on riboflavin synthesis by Clostridium acetobutylicum Hickey R.J.
  6. Riboflavin production by Candida species v.Science 101 Tanner F.W.Jr.;Ch. Vajnovich;J. Van Lanen
  7. Biochem. J. v.71 General factors controlling flavinogenesis in the yeast Candida flareri Goodwin T.;D. McEvoy
  8. Proc. Nat. Acad. Sci. USA. v.29 Synthesis of riboflavin by yeast Burkholder P.R.
  9. Arch. Biochem. v.3 Influence of some environmental factors upon the production of riboflavin by yeast Burkholder P.R.
  10. Acta Chem. Scand. v.9 Effect of cobalt and iron on riboflavin production by Candida guilliermondia Enari T.M.
  11. Agr. Biol. Chem. v.28 Riboflavin biosynthesis by Candida robusta; Part Ⅲ. Effect of metal ion and necessity of CaCo₃ Takao S.
  12. J. Bacteriol. v.67 The synthesis of riboflavin by a mutant yeast, Saccharomyces cerevisiae Giri K.V.;P.R. Krishnaswamy
  13. Ind. Eng. Chem. v.41 Riboflavin production by Candida yeasts Levine H.;J.E. Oyaas;L.Wasserman;J.C. Hoogerheide;R.M. Stern
  14. Patent WO 88/09822 Riboflavin producing strains of fermentation Heefner D.;C.A. Weaver;M.J. Yarus;L.A. Burdzinski;D.C. Gyure;E.W. Foster
  15. C. R. Acad. Sci. v.201 Sur I'Existence dans I'Eremothecium Ashbyii d'un pigment jaune se rapportant au groupe des flavines Guilliermond A.;M. Fontaine;A. Raffy
  16. J. Bacteriol. v.63 The effects of certain purines and pyrimidines upon the production of Riboflavin by Eremothecium ashbyii Mclaren J.A.
  17. Mycologia v.44 Production of riboflavin by Eremothecium ashbyii growth in a synthetic medium Yaw K.E.
  18. J. Bacteriol. v.66 Some nutritional requirements for biosynthesis of riboflavin by Eremothecium ashbyii Hickey R.J.
  19. US patent 2,647,704 Riboflavin by microbiology fermentation Beesch S.C.;B.N. Frazer
  20. Sov. Genet. v.8 Mutants of Eremothecium ashbyii resistant to 8-azaguanine; Communication I. Isolation of mutants and study of the level of riboflavin biosynthesis Stepanov A.I.;M. Yu. Beburov;V.G. Zhdanov
  21. Appl. Microbiol. Biotechnol. v.47 Application of agro-industrial by-products for riboflavin production by Eremothecium ashbyii NRRL 1363 Kalingan A.E.;M.R.V. Krishnan
  22. Acad. Sci. Hung. v.18 Correlation between the morphological variability and riboflavin producing capacity of Eremothecium ashbyii Vaghy T.
  23. Sov. Genet. v.8 The use of mutagenic factors in the selection of he riboflavin producer Eremothecium ashbyii Stepanov A.I.;M. Yu. Beburov;V.G. Zhdanov
  24. Biotechnol. Lett. v.8 Riboflavin production by Eremothecium ashbyii in a batch stirred tank fermentor Ozbas T.;T. Kutsal
  25. Enzyme Microb. Technol. v.3 Comparative study of riboflavin production by two organisms Eremothecium ashbyii and Ashbya gossypii Ozbas T.;T. Kutsal
  26. Biotechnol. Lett. v.16 Effect of pH on exocellular riboflavin production by Eremothecium ashbyii Kolonne S.;R.J. Seviour;B.M. McDougall
  27. Biotechnology v.7b Industrial products of biotechnology: application of gene technology Bigelis R.;H.J. Rehm(eds.);G. Reed(eds.)
  28. USDA Technical Bull. v.1469 no.8 Nematosporaceas (Hemiascomycetidae) taxonomy, pathogenicity distribution and vector relations Batra L.R.
  29. J. Bacteriol. v.53 Studies on Eremothecium ashbyii Moore H.N.;G. de Becze;E. Schraffenberger
  30. Arch. Biochem. v.9 The production of riboflavin by Ashbya gossypii Wickerham L.J.;M.H. Flickinger;R.M. Johnston
  31. Annu. Rev. Microbiol. v.26 Riboflavin oversynthesis Demain A.L.
  32. Mycologia v.46 Synthesis of ribo-flavin by Ashbya gossypii grown in a synthetic medium Goodman J.J.;R.R. Ferrera
  33. Biochem. Biophys. Acta. v.47 Effect of surface active agents on the biosynthesis of riboflavin by Ashbya gossypii Smith C.G.;G.A. Smith;Z. Papadoupoulou
  34. Recent Trends in Yeast Research. Nutritional studies on riboflavin overproduction by Ashbya gossypii Kaplan L.;A.L. Demain;D.G. Ahearn(eds.)
  35. Bacteriol. Proc. v.21 The production of riboflavin by Ashbya gossypii Malzahn R.C.;R.F. Philips;A.M. Hanson
  36. Microbial Technology Microbial production of pigments and vitamins Hanson A.M.;H.J. Peppler(eds.)
  37. Acta Microbiologica Plonica Ser. B. v.3 Biosynthesis of Riboflavin by Ashbya gossypii. Part Ⅰ. The influence of fats of the animal origin on the riboflavin production Szczesniak T.;L. Karabin;M. Szczepankowska;K. Wituch
  38. Acta Biol. Exp. Sinica v.7 Studies on the biosynthesis of riboflavin by Ashbya gossypii I. Factors affecting the high yield of riboflavin Chiao J.;Y. Gwan;Y. Shen;W. Chen;C. Lang;H. Wang
  39. Acta Microbiologica Polonica Ser. B. v.3 Biosynthesis of Riboflavin by Ashbya gossypii. Part Ⅱ. The influence of animal proteins on the riboflavin production Szczesniak T.;L. Karabin;M. Xzczepankowska;K. Wituch
  40. Ann. Rev. Biochem. v.30 Water-soluble vitamins, Part Ⅱ. Folic acid, Riboflavin, Thiamine, Vitamin B12 Plaut G.W.E.
  41. J. Biochem. v.57 Flavin coenzymes, flavinogenesis and reproduction in Ashbya gossypii Cerletti P.;R. Strom;M.G. Giordano;D. Barra;S. Giovenco
  42. Commonwealth Agricultural Bureaux no.185 C.M.I. Descriptions of pathogenic fungi and bacteria Mukerji K.G.
  43. J. Bacteriol. v.172 Microbial growth patterns described by fractal geometry Obert M.;P. Peeifer;M. Sernetz
  44. Appl. Microbiol. Biotechnol. v.42 Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii Stahmann K.-P.;C. Kupp;S.D. Feldmann;H. Sahm
  45. Lipid Bio-Chemistry of Fungi and Other Organisms Lipid metabolism during fungal development Weber D.J.;J.D. Weete(eds.)
  46. Microbiology v.142 Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii Schmidt G.;K.-P. Stahmann;H. Sahm
  47. Microbiology v.142 Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii Schmidt G.;K.-P. Stahmann;B. Kaesler;H. Sahm
  48. Eur. J. Biochem. v.244 Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid Stahmann K.-P.;T. Boddecker;H. Sahm
  49. Appl. Microbiol. Biotechnol. v.50 Adaptation of the filamentous fungus Ashbya gossypii to hyperosmotic stress: different osmoresponse to NaCl and mannitol stress Foster C.;S. Marienfeld;V.F. Wendisch;R. Kramer
  50. FEMS Microbiol. Lett. v.167 Organelle purification and selective permeabilisation of the plasma membrane: two different approaches to study vaculoes of the filamentous fungus Ashbya gossypii Foster C.;S. Marienfeld;R. Wilhelm;R. Kramer
  51. Biochem. Soc. Tans. v.24 Biosynthesis of riboflavin: structure and mechanism of lumazine synthase Bacher A.;M. Fisher;K. Kis;K. Kugelbrey;S. Mortl;J. Scheuring;S. Weinkauf;S. Eberhardt;K. Schmidt-Base;R. Hurber;K. Ritsert;M. Cushman;R. Ladenstein
  52. Appl. Environ. Microbiol. v.62 Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis Sauer U.;V. Hatzimankatis;H.-P. Hohmann;M. Manneberg;A.P.G.M. Loon;J.E. Bailey
  53. European patent application 0-405-370-A1 Riboflavin overproducing strains of bacteria Perkins J.B.;J.G. Pero;A. Sloma
  54. Acta Cient. Venez. v.39 Riboflavin production by Candida guilliermondi from liquid brewery waste Contasti V.;S. Bahar
  55. J. Basic. Microbiol. v.34 Utilization of beet molasses for riboflavin production by Mycobacterium phlei Ghozlan H.A.
  56. Microbios. v.57 Riboflavin formation by mould fungi cultivated on hydrocarbon-containing media Sabry S.A.;A.H. El-Refai;S.Y. Gamati
  57. Commun. Sci. Devel. Res. v.12 no.1 Utilization of hydrocarbons by some fungi isolated from El-Alameen crude oil refineries Omar S.H.;Z.A. Olama
  58. Microbiologia v.9 Riboflavin production by Aspergillus terreus from beet-molasses Sabry S.A.;K.M. Ghanem;H.A. Ghozlan
  59. Biosynthesis of nucleotides: Biochemistry(4th ed.) Stryer L.
  60. J. Bacteriol. v.109 Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces Ulane R.;M. Ogur
  61. J. Biol. Chem. v.269 Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferase, whose inactivation is required to render yeast auxotrophic for glycine McNeil J.B.;E.M. McIntosh;B.V. Taylor;F. Zhang;S. Tang;A.L. Bognar
  62. Biochem. J. v.57 Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium ashbyii Goodwin T.W.;S. Pendlington
  63. Biochem. J. v.64 Studies on the biosynthesis of riboflavin. 3. The utilization of 14C-labelled serine for riboflavin biosynthesis by Eremothecium ashbyii Goodwin T.W.;O.T.G. Jones
  64. Biochem. J. v.75 Studies on flavinogenesis 6: The role of threonine in riboflavin biosynthesis in Eremothecium ashbyii Goodwin T.W.;A.A. Horton
  65. Angew. Chem. Int. Ed. Engl. v.8 The structure of the purine precursor in riboflavin biosynthesis Bacher A.;F. Lingens
  66. J. Biol. Chem. v.248 Biosynthesis of riboflavin. The structure of the purine precursor Bacher A.;B. Mailander
  67. Dokl. Akad. Nauk. SSSR. v.196 Flavinogenesis in guanine-dependent mutants of Candida guilliermondii Shavlovskii G.M.;L.P. Strugovshchikova;E.M. Logvinenko
  68. J. Bacteriol. v.98 Biosynthesis of the purine pecursor of riboflavin in Corynebacterium Baugh C.M.;C.L. Krumdieck
  69. J. Biol. Chem. v.251 Biosynthesis of riboflavin;Structure of the purine precursor and orgin of the ribityl side dain Mailander B.;A. Bacher
  70. J. Nutr. Sci. Vitaminol. v.19 Effects of 8-azaguanine on riboflavin production and on the nucleotide pools in non-growing cells of Eremothecium ashbyii Mitsuda H.;K. Nakajima
  71. J. Nutr. Sci. Vitaminol. v.21 Guanosine nucleotide precursor for flavinogenesis of Eremothecium ashbyii Mitsuda H.;K. Nakajima
  72. J. Nutr. Sci. Vitaminol. v.23 The immediate nucletide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway Mitsuda H.;K. Nakajima
  73. Genetika v.14 Operon of riboflavin biosynthesis in Bacillus subtilis XV. A study of mutants related to the initial stages of biosynthesis. The origin of the ribityl chain of the riboflavin molecule Bresler S.E.;G.F. Gorinchuk;T.P. Chernik;D.A. Perumov
  74. J. Biol. Chem. v.250 Purification and properties of guanosine triphosphate cyclohydrolase Ⅱ from Eschrerichia coli Foor F.;G.M. Brown
  75. Genetika v.15 Study of the operon for riboflavin biosynthesis in Bacillus subtilis;Influence of genotype on regulating the synthesis of GTP-5-triphosphate cyclohydrolase Bresler S.E.;D.A. Perumov
  76. Dokl. Akad. Nauk. SSSR. v.230 Determination of GTP-cyclohydrolase, the first enzyme of riboflavn biosynthesis from the yeast Pichia guilliermondii Shavlovskii G.M.;E.M. Logvinenko;V.E. Kashchenko;L.V. Kolton;A.E. Zakal'skii
  77. Mikrobiologiia v.46 Regulation of synthesis of GTP-cyclohydrolase participating in yeast falvinogenesis by iron Shavlovskii G.M.;V.E. Kashchenko;L.V. Kolton;E.M. Logvinenko;A.E. Zakal'skii
  78. Bull. Soc. Chem. Biol. v.51 Conversion of C-8 of guanine into a one carbon unit during riboflavin biosynthesis Hayes D.H.;G.R. Greenberg
  79. J. Biol. Chem. v.245 Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino) pyrimidine in a riboflavin auxotroph Bacher A.;F. Lingens
  80. J. Nutr. Sci. Vitaminol. v.22 Nucleotide precursor in riboflavin biosynthesis Mitsuda H.;K. Nakajima;T. Nadamoto
  81. J. Nutr. Sci. Vitaminol. v.23 Studies on the intermediates in the biosynthetic pathway of riboflavin. I. Identification of a green fluorescent compound, Compound C₁, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl Mitsuda H.;K. Nakajima;Y. Yamada
  82. Biochim. Biophys. Acta. v.543 Origin of the ribityl side-chain of riboflavin from the ribose moiety of guanosine triphosphate in Pichia guilliermondii yeast Miersch J.;E.M. Logvinenko;A.E. Zakalsky;G.M. Shavlovskii;H. Reinbothe
  83. Mikrobiologiia v.48 Product of second-stage riboflavin biosynthesis in Pichia guilliermondii Logvinenko E.M.;G.M. Shavlovskii;A.E. Zakalsky
  84. Biochim. Biophys. Acta v.662 Biosynthesis of riboflavin;Characterization of the product of the deaminase Nielsen P.;A. Bacher
  85. Arch. Mikrobiol. v.89 Genetic control of riboflavin synthetase in Bacillus subtilis Bacher A.;U. Eggers;F. Lingens
  86. Biochem. J. v.101 no.2C Isolation of 5-amino-4-ribityl-aminouracil from a riboflavinless mutant of Aspergillus nidulans Sadique J.;R. Shanmugasundaram;E.R.B. Shanmugasundaram
  87. Z. naturforsch. v.22B Uber Zwischenproducte der Riboflavin-Biosynthese bei Saccharomyces cerevisiae Lingens F.;O. Oltmanns;A. Bacher
  88. J. Nutr. Sci. Vitaminol. v.22 Isolation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine from a high flavinogenic mold Eremothecium ashbyii Mitsuda H.;K. Nakajima
  89. J. Biol. Chem. v.253 Isolation of 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine from a riboflavin-adenine-deficient mutant of Bacillus subtilis Mitsuda H.;K. Nakajima;Y. Yamada
  90. J. Biol. Chem. v.253 Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino) pyrimidine in a riboflavin auxotroph Bacher A.;F. Lingens
  91. Biochem Biophys. Res. Commun. v.89 Biosynthesis of riboflavin: reductase and deaminase of Ashbya gossypii Hollander I.;G.M. Brown
  92. J. Bacteriol. v.136 Presence in Escherichia coli of a deaminase and a reductase involved in viosynthesis of riboflavin Burrows R.B.;G.M. Brown
  93. Genetika v.13 Riboflavin biosynthesis operon of Bacillus subtilis. ⅩⅢ. Genetic and biochemical study of mutants with regard to intermediate stages of biosynthesis Bresler S.E.;E.A. Glazunov.;D.A. Perumov;T.P. chernik
  94. Biochem. J. v.70 The incorporation of (2-14C) acetylmethylcarbinol (acetone) into ring A of riboflavin by Eremothecium ashbyii; a new route for the biosynthesis of an aromatic ring Goodwin T.W.;D.H. Treble
  95. J. Vitaminol. v.5 Synthesis of riboflavin by microorganisms. Ⅶ. The enzymic riboflavin synthesis from 4-(N-ribitylamino)-5-aminouracil Katagiri H.;I. Takeda;K. Imai
  96. Nature v.191 Biosynthesis of riboflavin in cell-free systems Goodwin T.W.;A.A. Horton
  97. Int. J. Biochem. v.6 Asymmetric labeling of the xylene ring in riboflavin Jabasani M.T.;U.A.S. Al-Khalidi
  98. J. Nutr. Sci. Vitaminol. v.24 Effects of various metabolites (sugars, carboxylic acids and alcohols) on riboflavin formation in non-growing cells of Ashbya gossypii Mitsuda H.;K. Nakajima;Y. Ikeda
  99. Z. Allg. Mikrobiol. v.10 Purinstoffwechsel und Riboflavin Bildung in Mikroorganismenn. VI. Der Einfluβ von L-Valin auf die Flavinogenes von Candida guilliermondii Schlee K.;H. Reinbothe
  100. Comprehensive Biochemistry v.21 Metabolism of water-soluble vitamins;The biosynthesis of riboflavin Plaut G.W.E.;M. Florkin(eds.);E.H. Stotz(eds.)
  101. Biochem. J. v.98 The precursors of the xylene ring in riboflavin Plaut G.W.E.
  102. Biochem. Biophys. Res. Commun. v.40 Biosynthesis of the 4,5-dimehtyl-1, 2-phynylene moiety of vitamin B12 Alworth W.C.;H.N. Bacher;M.F. Winkler;A.M. Keenan;G.W. Gokel;F.L. Wood
  103. Tetrahedron v.39 Biosynthesis of riboflavin 13C-NMR techniques for the analysis of multiply 13C-labeled riboflavins Keller P.J.;Q. Le Van;A. Bacher;H.G. Floss
  104. J. Am. Chem. Soc. v.105 Biosynthesis of riboflavin;An unusual rearrangement in the formation of 6,7-dimethyl-8-ribityllumazine Floss H.G.;Q. Le Van;P.J. Keller;A. Bacher
  105. Biochem. Biophys. Res. Commun. v.118 Biosynthesis of riboflavin;Enzymatic formation of the xylene moiety from [14C]ribulose 5-phosphate Nielsen P.;G. Neuberger;H.G. Floss;A. Bacher
  106. J. Bacteriol. v.162 Biosynthesis of riboflavin in Bacillus subtilis: orgin of the four-carbon moiety Le Van Q.;P.J. Keller;D.H. Bown;H.G. Floss;A. Bacher
  107. J. Biol. Chem. v.265 Studies on the 4-carbon precursor in the biosynthesis of ribofavin Volk R.;A. Bacher
  108. J. Vitaminol. v.4 Synthesis of riboflavin by microorganisms Katagiri H.;I. Takeda;K. Imai
  109. J. Biol. Chem. v.235 no.PC 41 Studies on the 4-carbon precursor in the biosynthesis of ribofavin Volk R.;A. Bacher
  110. J. Am. Chem. Soc. v.92 Stereospecificity of the enzymatic synthesis of the o-xylene ring of riboflavin Beach R.L.;G.W.E. Plaut
  111. J. Biol. Chem. v.258 Biosynthesis of riboflavin;Incorporation of 13C-labelled precursors into the xylene ring Bacher A.;Q. Le Van;P.J. Keller;H.G. Floss
  112. Z. Naturforsch. v.42c Enzymatic synthesis of riboflavin and FMN specifically labeled with 13C in the xylene ring Sedlmaier H.;F. Miller;P.J. Keller;A. Bacher
  113. J. Biol. Chem. v.239 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine, the second product of the riboflavin synthetase reaction Wacker H.;R.A. Harvey;C.H. Winestock;G.W.E. Plaut
  114. J. Nutr. Sci. Vitaminol. v.22 Reutilization of by-product for riboflavin formation in the riboflavin synthetase reaction Mitsuda H.;T. Nadamoto;K. Nakajima
  115. Dokl. Akad. Nauk. SSSR. v.305 Riboflavin biosynthesis gene of Bacillus subtilis complete primary structure and model of organization Mironov V.N.;A.E. Kraev;B.K. Chernov;A.V. Ul'yanov;Y.B. Golva;G.E. Pozmogova;M.L. Simonova;V.K. Gordeev;A.I. Stepanov;K.G. Skryabin
  116. Biokhimia v.57 Purification and properties of GTP-cyclohydrolase from Bacillus subtilis Boretskii Iu.R.;Iu.S. Skoblov;O.M. Khodova;P.M. Rabinivich
  117. J. Bacteriol. v.175 Biosynthesis of riboflavin: cloning, sequencing, mapping and expression of the gene encoding for GTP cyclohydrolase Ⅱ in Escherichia coli Richter G.;H. Ritz;G. Katzenmeier;R. Volk;A. Kohnle;F. Lottspeich;D. allendorf;A. Bacher
  118. J. Bacteriol. v.174 Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene encoding 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli Richter G.;R. Volk;C. Kriegger;H.W. Lahm;U. Rothlisberger;A. Bacher
  119. From Genes to Bio-Products Biosynthesis of vitamin B₂ in yeast Revuelta J.L.;M.A. Santos;J.J. Garcia-ramirez
  120. Yeast v.9 Mapping of the RIB1 and RIB7 genes involved in the biosynthesis of riboflavin in Saccharomyces cerevisiae Buitrago M.-J.;G.A. Gonzalez;J.E. Saiz;J.L. Revuelta
  121. Escherichia coli cells. Genetika v.26 Cloning of the gene coding for the enzyme of the first stage of flavinogenesis in the yeast Pichia guilliermondii, GTP cyclohydrolase Liauta-Teglivets O.;M. Hasslacher;Iu.R. Boretskii;S.D. Kohlwein;G.M. Shavlovskii
  122. Yeast v.11 Molecular cloning of the GTP-cyclohydrolase structural gene RIB1 of Pichia guilliermondii involved in riboflavin biosynthesis Liauta-Teglivets O.;M. Hasslacher;Iu.R. Boretskii;S.D. Kohlwein;G.W. Shavlovskii
  123. J. Biol. Chem. v.246 Formation of 6-hydroxy-2,4,5-triaminopyrimidine in RIB7 mutant of Saccharomyces cerevisiae Bacher A.;F. Lingens
  124. Chemistry and biochemistry of flavins v.1 Biosynthesis of flavins Bacher A.;F. Muller(eds.)
  125. Sov. Genet. v.19 Three linkage groups of genes involved in riboflavin biosynthesis in Escherichia coil Bandrin S.V.;P.M. Rabinovich;A.I. Stepanov
  126. Bacillus subtilis and Other Grampositive Bacteria: Biochemistry, Physiology, and Molecular Genetics Biosynthesis of riboflavin, biotin, folic acid, and cobalamin Perkins J.B.;J.G. Pero;A. Sonenshein(eds.)
  127. Biochem. Soc. Trans. v.24 no.35S Biosynthesis of riboflavin;Bifunctional pyrimidine deaminase/reductase of Escherichia coli and Bacillus subtilis Fischer M.;S. Eberhardt;G. Richter;C. Krieger;I. Gerstenschlager;A. Bacher
  128. Mol. Gen. Genet. v.234 Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation Tetsuya T.;C. Ueguchi;K. Shiba;K. Ito
  129. J. Biol. Chem. v.270 The Saccharomyces cerevisiae RIB4 gene codes for 6,7-dimethyl-8-ribityllumazine synthase involved in riboflavin biosynthesis Garcia-Ramirez J.J.;M.A. Santos;J.L. Revuelta
  130. J. Biol. Chem. v.255 Riboflavin synthases of Bacillus subtilis;Purification and properties Bacher A.;R. Baur;U. Eggers;H.-D. Harders;M.K. Otto;H. Schnepple
  131. J. Mol. Biol. v.187 Heavy riboflavin synthase from Bacillus subtilis;Quaternary structure and reaggregation Bacher A.;H.C. Ludwig;H. Schnepple;Y. Ben-Shaul
  132. J. Mol. Biol. v.187 Heavy riboflavin synthase from Bacillus subtilis;Particle dimensions, crystal packing and molecular symmetry Ladenstein R.;B. Meyer;R. Huber;H. Labischinski;K. Bartels;H.-D. Bartunik;L. Bachmann;H.C. Ludwig;A. Bacher
  133. J. Biol. Chem. v.271 Biosynthesis of riboflavin;Lumazine synthase of Escherichia coli Mirtl S.;M. Fischer;G. Richter;J. Tack;S. Weinkauf;A. Bacher
  134. J. Biol. Chem. v.265 Riboflavin synthases of Bacillus subtilis;Purification and amino acid sequence of the α subunit Schott K.;J. Kellermann;F. Lottspeich;A. Bacher
  135. J. Biol. Chem. v.241 Riboflavin synthetase from yeast;Properties of complexes of the enzyme with lumazine derivatives and riboflavin Harvey R.A.;G.W.E. Plaut
  136. Eur. J. Biochem. v.115 Ligand-binding studies on light riboflavin synthase from Bacillus subtilis Otto M.K.;A. Bacher
  137. Coli. Biochem. Soc. Trans. v.24 no.34S Structure investigation on recombinant riboflavin synthase from E. Tibbelin G.;S. Eberhardt;G. Richter;A. Bacher
  138. J. Biol. Chem. v.270 Riboflavin biosynthesis in Saccharomyces cerevisiae;Cloning, characterization, and expression of the RIB5 gene encoding riboflavin synthase Santos M.A.;J.J. Garcia-Ramirez;J.L. Revuelta
  139. J. Biol. Chem. v.266 Biosynthesis of riboflavin;Studies on the mechanism of L-3,4-dihydroxy-2-butanone-4-phosphate synthase Volk R.;A. Bacher
  140. Methods Enzymol. v.280 Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone 4-phosphate synthase Richter G.;C. Krieger;R. Volk;K. Kis;H. Ritz;E. Gotze;A. Bacher
  141. Biochem. J. v.130 Ribitol and flavinogenesis in Eremothecium ashbyii Mehta S.U.;A.K. Matoo;V.V. Modi
  142. FEMS Microbiol. Lett. v.150 Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis Moschau N.;K.-P. Stahmann;H. Sahm;J.B. McNeil;A.L. Bognar
  143. Appl. Environ. Microbiol. v.64 TYhreonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii Monschau N.;H. Sahm;K.-P. Stahmann
  144. FEBS Lett. v.444 Isocitrate lyase of Ashbya gossypii - transcriptional regulation and peroxisomal location Maeting I.;G. Schmidt;H. Sahm;J.L. Revuelta;Y.-D. Stierhof;K.-P. Stahmann
  145. Biochem. J. v.319 Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae Taylor K.M.;C.P. Kaplan;X. Gao;A. Baker
  146. Gene v.198 Isocitrate lyase localisation in Saccharomyces cerevisiae cells Chaves R.S.;P. Herrero;I. Ordiz;M.A. del Brio;F. Moreno