• Title/Summary/Keyword: solders

Search Result 166, Processing Time 0.018 seconds

Nano-Composite Solder Technology for the Improvement of Solder Joint Properties (무연솔더 접합부 특성향상을 위한 나노복합솔더 기술)

  • Ki, Won-Myoung;Lee, Young-Kyu;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.9-17
    • /
    • 2011
  • Nano-composite solders have been studied to improve the properties of Pb-free solder joints. The nanoparticles in the composite solders were carbon nanotubes(CNTs), metals (Ag, Ni, Cr, etc.), ceramics (SiC, $ZrO_2$, $TiB_2$, etc.). To fabricate the nano-composite solders, mechanical mixing methods and in-situ fabrication method has been used for well-dispersed nano phase. The characteristic properties of the nano-composite solders were high creep resistance, low undercooling, low IMC growth rate and fine microstructures. More researches on the nano-composite solders are required to improve the processibility and the reliability of the nano-composite solder joints.

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

Lead-Free Solders and Processing Issues Relevant to Microelectronics Packaging

  • Kang, Sung K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.147-163
    • /
    • 2003
  • European Union bans the usage of Pb in electronics from July 1 st, 2006. The Near-eutectic Sn-Ag-Cu alloys are the leading candidate Pb-free solders (for SMT card assembly). .The microstructure of Sn-Ag-Cu alloys is discussed in terms of solidification, composition and cooling rate. Methods of controlling Ag3Sn plates are discussed. .Thermo-mechanical fatigue behaviors of Sn-Ag-Cu solder joints are reviewed. Tin pest, whisker growth, electromigration of Pb-free solders are discussed.

  • PDF

Lead-free Solder Technology and Reliability for Automotive Electronics (자동차 전장용 무연 솔더 기술)

  • Lee, Soon-Jae;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, properties of Pb-free solders for automotive electronics parts were discussed. Lead-free solders for electronics became important after RoHS (Restriction of the use of certain Hazardous Substances) to avoid environmental pollution. Also the growing electronic rate in automotive parts and ELV (End-of Life Vehicles) make Pb-free solder for automotive electronics to be inevitable trend. Definitely, Pb-free solder for automotive electronics should have good wettability, basic strength, but need more reliability than other solders, since it has harsh condition like high temperature, humidity and engine vibration. Thus, shear strength test, thermal shock, drop test and many others are needed to ensure the high reliability. This study describes the properties and requirements of Pb-free solders for automotive electronics.

Effect of Cu-contained solders on shear strength of BGA solder joints

  • Shin, Chang-Keun;Huh, Joo-Youl
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.73-73
    • /
    • 2000
  • Shear strength of BGA solder joints on Cu pad was studied for Cu-contained Sn n.5 a and 2.5wt.% Cu) and Sn-Pb (o.5wt.% Cu) solders, with emphasis on the roles of the C Cu-Sn intermetallic layer thickness and the roughness of the interface between the i intermetallic layer and solder. The shear strength test was performed both for a as-soldered s이der joints with soldering reaction times of 1, 2, 4 min and for aged s이der j joints at 170 C up to 16 days. The Cu addition to both pure Sn and eutectic Sn-Pb s solders increased the intermetallic layer thickness at both soldering and aging t temperatures. The Cu addition also resulted in changes in the roughness of the interface b between the intermetallic layer and solder at as-soldered states. With increasing Cu c content. the interface roughened for Sn-Cu solders whereas it flattened for Sn-Pb-Cu s solders. The shear fractures in all solder joints investigated were confined in the bulk s solder rather than through the intermetallic layer. Therefore, the effect of Cu content in s solders on the shear strength of the solder joints was primarily attributed to its i influence on the micros$\sigma$ucture of bulk solder, such as the size and spatial distributions of CU6Sn5 precipitates. In addition, the critical intermetallic layer thickness for a m maximum shear strength seemed to depend on the Cu content in bulk solder.older.

  • PDF

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

Verification Study of Lifetime Prediction Models for Pb-Based and Pb-Free Solders Used in Chip Resistor Assemblies Under Thermal Cycling (온도변화 환경에서 칩저항 실장용 유·무연솔더의 수명모델 검증연구)

  • Han, Changwoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.259-265
    • /
    • 2016
  • Recently, life prediction models for Pb-based and Pb-free solders used in chip resistor assemblies under thermal cycling have been introduced. The models suggest that the field lifetimes of Pb-free solders would be better than those of Pb-based solders when used for chip resistors under thermal cycling conditions, while the lifetime of the chip assemblies under accelerated test conditions show a reverse relationship. In this study, the prediction models were verified by applying the model to another research case. Finite element models were built, thermal cycling conditions were applied, and the energy densities were calculated. Finally, life prediction analysis was conducted for the cases where Pb-based and Pb-free solders were used. The prediction results were then compared with the test data of the case. It was verified that the predictions of the developed life cycle models are on the practical scale.

Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding (진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF

A Study fur Wettability of Silicate Glasses on Silicon Nitride (질화규소와 실리케이트계 유리의 젖음성에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.116-121
    • /
    • 2002
  • For the accumulation of a fundamental knowledge about the behavior of glass solder during the joining of ceramics, the wettability of solder on silicon nitride have been measured by sessile drop method. $SiO_2-MgO-Al_2O_3$ g1ass solder and oxynitride glass solders were selected as examples while silicon nitride which were used as substrates. Contact angle of solder on silicon nitride didn't decrease with time at high nitrogen content in the solder, but low nitrogen content in solders have the time-dependent property. Reason which contact angle of low nitrogen content in solders decrease on silicon nitride was that diffusion of nitrogen take place between solder and silicon nitride.

The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders (UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF