• Title/Summary/Keyword: solar wind

Search Result 1,072, Processing Time 0.036 seconds

A Multi-Criteria Spatial Decision Support System for Smart Hydrogen Energy Plant Location Planning in the Gangwon-Do Region, South Korea (강원도 지역 스마트 수소에너지 플랜트 입지계획을 위한 다기준 공간의사결정 지원 시스템 연구)

  • Yum, Sang-Guk;Adhikari, Manik Das
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.381-395
    • /
    • 2023
  • This paper presents a GIS-based site suitability analysis for a smart hydrogen energy plant in the Gangwon-Do region, South Korea. A GIS-based multi-criteria decision analysis (MCDA) was implemented in this study to identify the most suitable sites for the development of smart hydrogen energy plants. The study utilizes various spatial data layers, including hydrogen generation potential and climatic conditions, environmental and topographic conditions, and natural catastrophic conditions, to evaluate the suitability of potential sites for the hydrogen energy plant. The spatial data layers were then used to rank and prioritize the sites based on suitability. The findings revealed that 4.26% of the study area, or 712.14 km2, was suitable for constructing smart hydrogen energy plants. Some regions of Cheorwon-gun, Chuncheon-si, Wonju-si, Yanggu-gun, Gangneung-si, Hoengseong-gun, and near the coastal region along the east coast were found to be suitable for solar and wind energy utilization. The proposed MCDA provides a valuable tool for decision-makers and stakeholders to make informed decisions on the location of smart hydrogen energy plants and supports the transition to a sustainable and low-carbon energy system. Decision-makers can use the results of this study to select suitable sites for constructing smart hydrogen energy plants.

An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate (도시·건축형태와 미기후의 관계에 대한 관찰 연구)

  • Lee, Gunwon;Jeong, Yunnam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.109-119
    • /
    • 2018
  • This study investigates the effect of urban and architectural forms on the microclimate in urban areas. It applies urban and architectural elements such as urban form and tissue and building form and characteristics as the main influences on the microclimate within urban area. Among the 23 Automated Weather Stations (AWS) installed within Seoul city by the Korea Meteorological Administration, 6 sites were selected for the analysis, based on their different urban and architectural characteristics, and actual measurements were conducted in August 2017 using individual AWS equipment. Also, the measurements of microclimate and urban and architectural elements within a 500m radius of the AWS measurement points were collected and analyzed. The result of the analysis shows that the microclimate elements, such as wind speed, solar radiation, and temperature, were affected by the direction of the streets, the width, depth, and height of the buildings, the topographic elevation and direction and the traffic volume. This study is expected to contribute to mitigating urban heat island effect and setting the foundation for sustainable cities through development of urban management methods and techniques including the relationship between built environment elements and microclimate.

Analysis of the Spatial Distribution of Pan Evaporation Trends (Pan 증발량 추세분포 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.243-255
    • /
    • 2010
  • The spatial distribution of pan evaporation and pan evaporation trends have been studied. In this study, pan evaporation data from 1973 to 1990 for 56 climatological stations were analyzed. In addition to annual average daily pan evaporation, monthly average daily pan evaporation in April, July, October and January were analyzed, considering seasonal effect. The study results indicate that in case of annual average daily pan evaporation, 38 stations out of 56 stations show decreasing trend. In case of average daily pan evaporation in January, 33 stations show decreasing trend. In April, 38 stations show increasing trend. In July, 47 stations show decreasing trend. In October, 35 stations show increasing trend. Therefore, on the whole, pan evaporation tended to decrease in January, July, and annual basis. On the other hand, pan evaporation tended to increase in April and October. Furthermore, pan evaporation trend in each individual region shows also different trend even though the region is located nearby, indicating that there are geographical and topographical effects on pan evaporation trend. Pan evaporation data and climatic data from 1973 to 2006 for 11 climatological stations were used for trend analysis. Climatic variables such as temperature, relative humidity and wind speed show same or opposite trend direction compared with pan evaporation in annual or monthly basis. Annual and monthly solar radiation trends show the same direction compared with pan evaporation; however, annual and monthly precipitation trends show the opposite direction compared with pan evaporation.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

Effect of Curing Conditions on Inhibition of Tuber Rot in Subtropical Yam (Dioscorea alata) during Storage (아열대 마(Dioscorea alata)의 저장중 부패 억제를 위한 큐어링 효과)

  • Kim, Ki-Sun;Kwon, Soon-Bae;Chang, Kwang-Jin;Hong, Sae-Jin;Kim, Byung-Sup
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 2012
  • In order to improve storability of subtropical yam produced in South Korea, the major pathogens found during the storage were isolated and identified of the pathogenicity, and rot inhibition effect was studied based on the curing treatment condition. Penicillium sclerotigenum and Penicillium polonicum were identified as major pathogens causing rot in subtropical yam during storage, and P. sclerotigenum had stronger pathogenicity. Only the cut surface which has been made during a harvest and has been made smooth before curing generated a normal callus layer. The cut surface of tuberous root was cured in 95% of relativity humidity for three days at $23^{\circ}C$, and cured at $28^{\circ}C$ and $33^{\circ}C$. The observation of callus layer showed that the $23^{\circ}C$ treatment group had similar color saturation between tuberous root and pellicle, while the groups treated above $28^{\circ}C$ showed clear distinction. The generation rate of callus 0.5mm or bigger was 93 percent at $28^{\circ}C$ treatment, 96% at $33^{\circ}C$ treatment, but was 52% at $23^{\circ}C$ treatment. The conventional curing treatment group that used wind or sunlight at room temperature created little callus layer. The infection rate of pathogens according to the relative humidity inside the storage room was low at 40% and 60% of humidity, and the curing treatment period did not make a difference. When the humidity inside the storage room was 80%, all treatment groups rapidly increased the fungal pathogens. The rotten rate of each treatment was studied after 180 days during which the storage temperature was maintained at $16^{\circ}C$ and relative humidity 60%. While the rotten rate of tuberous root that has been cut in conventional curing treatment based on solar and wind was 43%, the one cured at over $28^{\circ}C$ and created the callus layer was less than 18%. While even a healthy tuberous root showed 25% of rotten rate in the traditional treatment group, the one cured at over $28^{\circ}C$ was less than 10%. The weight loss was 1-6% lower in the forced treatment group than in the conventional treatment group.

Pergola's Shading Effects on the Thermal Comfort Index in the Summer Middays (여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.52-61
    • /
    • 2013
  • This study was conducted to investigate the effects of pergola's shading on the thermal comfort index in the summer. The 3 type of pergolas($4m{\times}4m{\times}h2.7m$) which were screened overhead(I)/overhead west(II)/overhead west north(III) plane with reed blind for summer shading and winter wind break, were constructed on the 4th floor rooftop. Thereafter the meteorological variables(air temperature, humidity, radiation, and wind speed) of pergola I, III and rooftop were measured from 14 to 16 August 2013(1st experiment), those of pergola I, II and rooftop were measured from 26 to 28 August 2013(2nd experiment). The effects of pergola's shading on the radiation environment and mean radiant temperature($T_{mrt}$), standard effective temperature($SET^*$) were as follows. The maximum 1 h mean values of differences ${\Delta}$ of the sums of shortwave radiant flux densities absorbed by the human body (${\Delta}K_{abs,max}$) between pergola I, III and nearby sunny rooftop were $-119W/m^2$, $-158W/m^2$, those between pergola I, II and rooftop were $-145W/m^2$, $-159W/m^2$. The maximum 1 h mean values of differences ${\Delta}$ of the sums of long wave radiant flux densities absorbed by the human body (${\Delta}L_{abs,max}$) between pergola I, III and nearby sunny rooftop, were $-15W/m^2$, $-17W/m^2$, those between pergola I, II and nearby rooftop, were $-8W/m^2$, $-7W/m^2$. The response of the direction dependent long wave radiant flux densities $L_1$ on the pergola's shading turned out to be distinctly weaker as compared to shortwave radiant flux densities $K_1$. The pergola's shading leads to a lowering of $T_{mrt}$ and $SET^*$. The peak values of $T_{mrt}$ absorbed by the human body were decreased $16^{\circ}C$ and $21.4^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $18.8^{\circ}C$ and $20.8^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The peak values of $SET^*$ absorbed by the human body were decreased $2.9^{\circ}C$ and $2.6^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $3.5^{\circ}C$ and $2.6^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The relative $SET^*$ decrease in pergola II, III compared to nearby sunny rooftop $SET^*$ were lower than that in pergola I, revealing the influence of the wind speed. Therefore it is essential to design pergola to maximize wind speed and minimize solar radiation to achieve comfort in the hot summer. The $SET^*$ under pergola I, III were exceeded $28.7^{\circ}C$ and $30.4^{\circ}C$ which were the upper limit of thermal comfort and tolerable zone during all most daytimes in the 1st experiment(maximum air temperature $37.5^{\circ}C$). The $SET^*$ under pergola I was exceeded $28.7^{\circ}C$ which was the upper limit of thermal comfort zone at 13h, that under pergola II was exceeded $28.7^{\circ}C$ from 8h to 14h, meanwhile the $SET^*$ under pergola I, II were within thermal tolerable zone during most daytimes in the 2nd experiment(maximum air temperature $34.4^{\circ}C$). Therefore to ensure the thermal comfort of pergola for summer hottest days, pergola should be shaded with not only reed blind but also climbing and shade plants. $T_{mrt}$ and $SET^*$ were suitable index for the evaluation of pergola's shading effects and outdoors.

A Study on the Eco-friendly Housing in the Near future based on the Ecological Design (생태학적 디자인을 기반으로 한 근 미래형 친환경주택연구)

  • Choo, Jin;Yoo, Bo-Hyeon
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.105-118
    • /
    • 2005
  • Housing environment for human beings has been diversified and more convenient due to the development of high technology and civilization brought by industrialization in the 20th century. In the 21st century, how to overcome the ecological limit of biased development-centered advancement, that is, how to preserve and hand over a clean and healthy 'sustainable environment' to our next generations has been one of the most-talked about issues. Environmental symbiosis means a wider range of environmental harmony from micro-dimensional perspective to macro one. The three goals of a environmentally friendly house are to preserve global environment, to harmonize with the environment around, and to offer a healthy and comfortable living environment. From the point of view of environmental symbiosis, houses should be designed to save energy and natural resources for preservation of global environment, to collect such natural energy resources as solar heat and wind force, to recycle waste water, and recycle and reduce the amount of the waste matter. Now, the environmentally-friendly house became a new social mission that is difficult to not only challenge but also realize without conversion to a new paradigm, ecologism.

  • PDF