• Title/Summary/Keyword: solar uv

Search Result 421, Processing Time 0.03 seconds

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent

  • Sani, Rabiya;Manivannan, R.;Victoria, S. Noyel
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.308-319
    • /
    • 2018
  • Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells (염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계)

  • Hwang, Seongjin;Jung, Hyunsang;Jeon, Jaeseung;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

A Study on the Improvement of Coloring in Dye-sensitized Solar Cell (염료감응형 태양전지의 착색 특성 개선 연구)

  • Seo, Hyun-Woong;Kim, Mi-Jeong;Son, Min-Kyu;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.297-300
    • /
    • 2007
  • In this study, we have attempted a new method to enhance the coloring of dye on the $TiO_2$ surface in the dye sensitized solar cell. In the conventional coloring process in a dye sensitized solar cells, dye is absorbed by the covalent bond between TiO2 and dye molecule while the photo-electrode coated with $TiO_2$ layer is soaked in dye solution for about 12-24 hours. But this process takes long time, so we have researched more effective and faster way than the conventional process by applying electric field. Three kinds of electric power such as direct voltage, alternating voltage and pulse voltage were applied to the transparent conducting oxide during the coloring process. As a result, we achieved improved power, fill factor and efficiency of dye-sensitized solar cell in case of applying direct voltage and pulse voltage. In contrast, alternating voltage tend to reduce the dye adsorption on the $TiO_2$ surface and hence the efficiency. We measured the absorption spectra of dye by UV-VIS spectrophotometer before and after soaking the $TiO_2$ in the dye and found no characteristic change in the dye was observed. In this study, we researched on shortening time of coloring process which spent much time in the whole process.

  • PDF

Long Organic Cation-modified Perovskite Solar Cells with High Efficiency and Stability (알킬 사슬이 긴 유기 양이온이 도입된 고효율/고안정성 페로브스카이트 태양전지)

  • Jung, Minsu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2022
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency (PCE) in 2020 from 3.8% in 2009 comparable to silicon photovoltacis. However, there remains important concern on the stability of perovskite solar cells under environmental conditions that should be solved prior to commercialization. In order to overcome the problem, we have introduced a small amount of octylammonium iodide with longer alkyl chain than volatile methylammonium iodide into MAPbI3 perovskites. The presence of octylammonium into perovskites were confirmed using Fourier-transform infrared spectroscopy and UV-visible spectroscopy. Moreover, octylammonium-modified perovskite solar cells showed a PCE of 16.6% and enhanced moisture stability with an increased contact angle of 72.2° from 57.0°. This work demonstrated the importance of perovskite compositional engineering for improving efficiency and stability.

$TiO_2$-태양광을 이용한 VOCs 분해연구

  • 박상은;주현규;정희록;전명석;강준원
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.48-49
    • /
    • 2001
  • 광촉매 분해반응시 광원으로서 기존의 UV램프의 사용에서 벗어나 인공적인 에너지가 필요없는 태양광을 VOCs 광분해에 solar simulator에서 타당성을 검토하고 태양광에 직접 적용하여 확인하였다. $TiO_2$-UVA 시스템에서 보다 $TiO_2$-태양광을 적용한 실험에서 분해반응속도의 증가를 보였다. 결과적으로 VOCs처리에 있어서 태양광의 적용이 가능하며 최대 4.514${\times}$$10^{-5}$ Einstein $min^{-1}$의 photon flow를 필요로 하는 광촉매분해반응에서 $TiO_2$ UVA시스템보다 태양광을 이용한 적용이 더 효과적인 것으로 사료된다.

  • PDF

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell (유기태양전지를 위한 작은 밴드갭 고분자의 합성과 광전특성)

  • Woo, Yong-Ho;Lee, Hyo-Sang;Park, Sungnam;Choi, E-Joon;Kim, BongSoo
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • We synthesized a low band gap alternating copolymer containing electron-rich units (i.e. dithienosiloles and benzodithiophenes) and electron-deficient units (i.e. difluorobenzothiadiazoles) for high performance organic solar cells. The polymer was prepared by the Stille coupling reaction and characterized using $^1H$ NMR, GPC, TGA, UV-visible absorption spectroscopy, and cyclic voltammetry. Solar cells were fabricated in a structure of ITO/PEDOT:PSS/polymer: $PC_{70}BM/Al$ with five different blending ratios of polymer and $PC_{70}BM$ (1:1.5, 1:2, 1:3, 1:3.5 and 1:4 by weight ratio). The best efficiency was achieved from the 1:3 ratio of polymer and $PC_{70}BM$ in the photoactive layer, and TEM revealed that there is an optimal nanoscale phase separation between polymer and $PC_{70}BM$ in the 1:3 ratio blend film.

Phototoxicity: Its Mechanism and Animal Alternative Test Methods

  • Kim, Kyuri;Park, Hyeonji;Lim, Kyung-Min
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential.