Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.1.71

Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell  

Woo, Yong-Ho (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Hyo-Sang (Korea Institute of Science and Technology)
Park, Sungnam (Green School, Korea University)
Choi, E-Joon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Kim, BongSoo (Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.39, no.1, 2015 , pp. 71-77 More about this Journal
Abstract
We synthesized a low band gap alternating copolymer containing electron-rich units (i.e. dithienosiloles and benzodithiophenes) and electron-deficient units (i.e. difluorobenzothiadiazoles) for high performance organic solar cells. The polymer was prepared by the Stille coupling reaction and characterized using $^1H$ NMR, GPC, TGA, UV-visible absorption spectroscopy, and cyclic voltammetry. Solar cells were fabricated in a structure of ITO/PEDOT:PSS/polymer: $PC_{70}BM/Al$ with five different blending ratios of polymer and $PC_{70}BM$ (1:1.5, 1:2, 1:3, 1:3.5 and 1:4 by weight ratio). The best efficiency was achieved from the 1:3 ratio of polymer and $PC_{70}BM$ in the photoactive layer, and TEM revealed that there is an optimal nanoscale phase separation between polymer and $PC_{70}BM$ in the 1:3 ratio blend film.
Keywords
organic solar cell; low band gap; Stille coupling reaction; alternating copolymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. C. Krebs, Sol. Energy Mater. Sol. Cells, 93, 394 (2009).   DOI   ScienceOn
2 S. Gnes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007).   DOI   ScienceOn
3 A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev., 110, 3 (2010).   DOI   ScienceOn
4 C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).   DOI
5 F. C. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale, 2, 873 (2010).   DOI   ScienceOn
6 E. Bundgaard, O. Hagemann, M. Manceau, M. Jorgensen, and F. C. Krebs, Macromolecules 43, 8115 (2010).   DOI   ScienceOn
7 J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun., 4:1446 doi: 10.1038/ncomms2411 (2013).   DOI   ScienceOn
8 M. C. Scharber, M. Koppe, J. Gao, F. Cordella, M. A. Loi, P. Denk, M. Morana, H.-J. Egelhaaf, K. Forberich, G. Dennler, R. Gaudiana, D. Waller, Z. Zhu, X. Shi, and C. J. Brabec, Adv. Mater., 22, 367 (2010).   DOI   ScienceOn
9 C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, and J. R. Reynolds, J. Am. Chem. Soc., 133, 10062 (2011).   DOI   ScienceOn
10 H.-Y. Chen, J. Hou, A. E. Hayden, H. Yang, K. N. Houk, and Y. Yang, Adv. Mater., 22, 371 (2010).   DOI   ScienceOn
11 H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, Angew. Chem. Int. Ed., 50, 2995 (2011).   DOI   ScienceOn
12 Z. Li, J. Lu, S.-C. Tse, J. Zhou, X. Du, Y. Tao, and J. Ding, J. Mater. Chem., 21, 3226 (2011).   DOI   ScienceOn
13 B. C. Schroeder, Z. Huang, R. S. Ashraf, J. Smith, P. D'Angelo, S. E. Watkins, T. D. Anthopoulos, J. R. Durrant, and I. McCulloch, Adv. Funct. Mater., 22, 1663 (2012).   DOI   ScienceOn
14 Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T. P. Russell, C. C. Han, Y. Li, and J. Hou, Adv. Mater., 24, 3383 (2012).   DOI   ScienceOn
15 X. Wang, Y. Sun, S. Chen, X. Guo, M. Zhang, X. Li, Y. Li, and H. Wang, Macromolecules, 45, 1208 (2012).   DOI   ScienceOn
16 R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, Nat. Chem., 1, 657 (2009).   DOI   ScienceOn
17 J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M.Turbiez, D. M. de Leeuw, and R. A. J. Janssen, J. Am. Chem. Soc., 131, 16616 (2009).   DOI   ScienceOn
18 S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 3, 297 (2009).   DOI   ScienceOn