Browse > Article
http://dx.doi.org/10.14478/ace.2022.1001

Long Organic Cation-modified Perovskite Solar Cells with High Efficiency and Stability  

Jung, Minsu (School of Chemical & Environmental Engineering, Dong-Eui University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 78-82 More about this Journal
Abstract
Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency (PCE) in 2020 from 3.8% in 2009 comparable to silicon photovoltacis. However, there remains important concern on the stability of perovskite solar cells under environmental conditions that should be solved prior to commercialization. In order to overcome the problem, we have introduced a small amount of octylammonium iodide with longer alkyl chain than volatile methylammonium iodide into MAPbI3 perovskites. The presence of octylammonium into perovskites were confirmed using Fourier-transform infrared spectroscopy and UV-visible spectroscopy. Moreover, octylammonium-modified perovskite solar cells showed a PCE of 16.6% and enhanced moisture stability with an increased contact angle of 72.2° from 57.0°. This work demonstrated the importance of perovskite compositional engineering for improving efficiency and stability.
Keywords
Perovskite solar cells; Organic cation; Efficiency; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Hamaguchi, M. Yoshizawa-Fujita, t. Miyasaka, H. Kunugita, K. Ema, Y. Takeoka, and M. Rikukawa, Formamidine and cesium-based quasi-twodimensional perovskites as photovoltaic absorbers, Chem. Commun., 53, 4366-4369 (2017).   DOI
2 A. Kojima, K. Teshima, T. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Eng. Soc., 131, 6050-6051 (2009).   DOI
3 https://www.nrel.gov/pv/assets/images/efficiency-chart.png, as of 29th December (2021).
4 H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. I. Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598, 444-450 (2021).   DOI
5 I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability, Angew. Chem. Int. Ed., 53, 11232-11235 (2014).   DOI
6 D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications, J. Am. Chem. Soc., 137, 7843-7850 (2015).   DOI
7 H. Tsai, W. Nie, J.-C. Blancon, C. C Stoumpos, R. Asadpour, and A. D. Mohite, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536, 312-316 (2016).   DOI
8 Y. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, and P. Docampo, Hybrid Perovskite/Perovskite Heterojunction Solar Cells, ACS Nano, 10, 5999-6007 (2016).   DOI
9 J. V. Passarelli, D. J. Fairfield, N. A. Sather, M. P. Hendricks, H. Sai, C. L. Stern, and S. I. Stupp, Enhanced Out-of-Plane Conductivity and Photovoltaic Performance in n = 1 Layered Perovskites through Organic Cation Design, J. Am. Chem. Soc., 140, 7313-7323 (2018).   DOI
10 L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, and E. H. Sargent, Ligand-Stabilized Reduced-Dimensionality Perovskites, J. Am. Chem. Soc., 138, 2649-2655 (2016).   DOI
11 T. M, Koh. V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, and S. G. Mhaisalkar, Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics, Adv. Mater., 28, 3653-3661 (2016).   DOI
12 M. Jung, T. J. Shin, J. Seo, G. Kim, and S. I. Seok, Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells, Energy Environ. Sci., 11, 2188-2197 (2018).   DOI
13 G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, and M. K. nazeeruddin, One-Year stable perovskite solar cells by 2D/3D interface engineering, Nat. Commun., 8, 15684-15691 (2017).   DOI
14 F. Yang, P. Zhang, M. A. Kamarudin, G. Kapil, T. Ma, and S. Hayase, Addition Effect of Pyreneammonium Iodide to Methyl-ammonium Lead Halide Perovskite-2D/3D Heterostructured Perovskite with Enhanced Stability, Adv. Funct. Mater., 28, 1804856-1804861 (2017).   DOI
15 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7, 982-988 (2014).   DOI
16 M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites, J. Phys. Chem. Lett., 6, 4774-4785 (2015).   DOI