Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.4.308

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent  

Sani, Rabiya (Department of Chemical Engineering, National Institute of Technology Raipur)
Manivannan, R. (Department of Chemical Engineering, National Institute of Technology Raipur)
Victoria, S. Noyel (Department of Chemical Engineering, National Institute of Technology Raipur)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.4, 2018 , pp. 308-319 More about this Journal
Abstract
Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.
Keywords
CZTS; Electrodeposition; Solar cells; Sodium thiocyanate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.P. Chan, H. Lam, C. Surya, Sol. Energ. Mat. Sol. C, 2010, 94(2), 207-211.   DOI
2 A.C. Tan, Tin and solder plating in the semiconductor industry, Chapman & Hall, London, 1992.
3 C.Y. Sheng, W.Y. Jun, L. Rui, G.J. Hua, L.J. Xiao, Y. Shi, Chin. Phys. B, 2012, 21, 058801-04.   DOI
4 S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energ. Mater, 2012, 2(2), 253-259.   DOI
5 B.S. Pawar, S.M. Pawar, S.W. Shin, D.S. Choi, C.J. Park, S.S. Kolekar, J.H. Kim, Appl. Surf. Sci, 2010, 257(5), 1786-1791.   DOI
6 S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, Electrochim. Acta , 2010, 55(12), 4057-4061.   DOI
7 J.H. Lee, H.J. Choi, W.M. Kim, J.H. Jeong, J.K. Park, Solar Energy, 2016, 136, 499-504.   DOI
8 A. Emrani, P. Vasekar, C.R. Westgate, Solar Energy, 2013, 98, 335-340.   DOI
9 H. Zhang, S. Cheng, J. Yu, Y. Lai, H. Zhou, H. Jia, ECS J. Solid State Sci. Technol, 2016, 5(9), P521-P525.   DOI
10 J.J.M. Josiah, D.H. Rasmussen, I.I. Suni, J. Electrochem. Soc, 2011, 158(2), D54-D56.   DOI
11 K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater, 2010, 22(20), E156-E159.   DOI
12 X. Zhang, X. Shi, W. Ye, C. Ma, C. Wang, Appl. Phys. A, 2009, 94(2), 381-386.   DOI
13 R.Sani, R. Manivannan, S.N. Victoria, Chal. Lett, 2017, 14,165-170.
14 M.G. Ganchev, K.D. Kochev, Sol. Energ. Mat. Sol. Cells, 1993, 31(2), 163-170.   DOI
15 S.B. Pawar, M.S. Pawar, V.K. Gurav, W.S. Shin, Y.J. Lee, S.S. Kolekar, H.J. Kim, ISRN Renewable Energy, 2011, 934575.
16 M. Farinella, R. Inguanta, T. Spanio, P. Livreri, S. Piazza, C. Sunseri, Energy Proceedia, 2013, 44,105-110.
17 D. Pletcher, Industrial electrochemistry, Springer Science + Business Media, B.V, 1984.
18 A. Brenner, Electrodeposition of alloys principles and practice, Vol. 1, Academic Press, New York, 1963.
19 N. Touabi, S. Martinez, M. Bounoughaz, Int. J. Electrochem. Sci, 2015, 10, 7227-7240.
20 K. Marianna, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavaara, E. Rauhalab, J. Electrochem. Soc, 147, 2000, 147(3), 1080-1087.   DOI
21 S. Arratia, H.A. Meneses, R.S. Guzman, C.C. Jara, Lat. Am. Appl. Res, 2012, 42(4), 371-376.
22 J.U. Emmanuel, I.A. Udoetok, N.W. Akpanudo, IOSR J. Appl. Chem, 2013, 5, 50-55.
23 A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, Appl. Surf. Sci, 2017, 402, 70-77.   DOI
24 X. Xu, F. Wang, Z. Li, J. Liu, J. Ji, J. Chen, Electrochim. Acta, 2013, 87, 511-517.   DOI
25 T. Fuchigami, S. Inagi, M. Atobe, Fundamentals and applications of organic electrochemistry, John Wiley & Sons, United Kingdom, 2014.
26 W.D. Shahizuan, Y. Mohd, J. Sci. Technol, 2012, 4(1), 49-60.
27 A. Ullah, A. Rauf, U.A. Rana, R. Qureshi, M.N. Ashiq, H. Hussain, H.-B. Kraatz, A. Badshah, A. Shah, J. Electrochem. Soc, 2015, 162(3), H157-H163.   DOI
28 A.A. Akl, A.S. Hassanien, Int. J. Adv. Res, 2014, 2(11), 1-9.
29 L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moelo, S. Jobic, Inorg. Chem, 2012, 51(6), 3346-3348.   DOI
30 J.L. van Heerden, R. Swanepoel, Thin Solid Films, 1997, 299(12), 72-77.   DOI
31 M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, J. Phys. Chem. C, 2012, 116(50), 26507-26516.   DOI
32 M.C. Sekou, L. Wang, X. Zhang, Nanotechnology, 2013, 24, 495401-495410.   DOI
33 D.K. Kaushik, T.N.Rao, A.Subrahmanyam, Surf. Coat. Tech, 2017, 314, 85-91.   DOI
34 S.B. Arvid, B. Marsen, S. Cinque, U. Thomas, K. Reiner, S. Schorr, H.W. Schock, Prog. Photovolt.: Res. Appl, 2011, 19(1), 93-96.   DOI
35 A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films, 2011, 29(5), 051203.   DOI
36 C. Ivan, B. Ester, M. Rafael, F. Diego, L.T. Stoyanova, C.B. Juan, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2015, 54(5), 175-180.   DOI
37 M.N. Shinde, P.D. Dubal, S.D. Dhawale, D.C. Lokhande, H.J. Kim, H.J. Moon, Mater. Res. Bull, 2012, 47(2), 302-307.   DOI
38 F. Aslan, A. Goktas, A. Tumbul, Mater. Sci. Semicon. Process, 2016, 43, 139-143.   DOI
39 S. Islam, M.A. Hossain, H. Kabir, M. Rahaman, M.S. Bashar, M.A. Gafur, A. Kabir, M.M.R. Bhuiyan, F. Ahmed, N. Khatun, Int. J. Thin Film Sci. Tecnol, 2015, 3,155-161.
40 H. Suarez, J.M. Correa, S.D. Cruz, C.A. Otalora, M. Hurtado, G. Gordillo, IEEE Transactions, 2013, 2585-2589.
41 S. Alok, R. Manivannan, S.N. Victoria, Arabian J. Chem, 2015.
42 B. Ananthoju, A. Kushwaha, F.J. Sonia, M. Aslam, AIP Conf. Proc., 2013, 1512, 706.
43 S.M. Camara, L. Wang, X. Zhang, Nanotechnology, 2013, 24, 495401.   DOI
44 S.N. Victoria, R. Prasad, R. Manivannan, Int. J. Electrochem. Sci, 2015, 10, 2220-2238.
45 B.S. Swaroop, S.N. Victoria, R. Manivannan, J. Taiwan Inst. Chem. Eng, 2016, 64, 269-278.   DOI
46 V. Gerardo, C.M. Fernandez, I. Gonazalez, ECS Trans, 2008, 15(1), 171-180.
47 Z. Xinwei, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv, 2015, 5(30), 23401-23409.   DOI
48 M.P. Suryavanshi, G.L. Agawane, S.M. Bhosale, S. Shin, P.S. Patil, J.H. Kim, A.V. Mohalkar, Mater. Technol, 2013, 28, 101-109.
49 Y. Yih-Min, C. Hsiang, L.S. Min, L. Shaung, Chalcogenide Lett, 2013, 10, 565-571.
50 K.P. Saraswat, S. Michael, F.L. Michael, T. Ashutosh, Thin Solid Films, 2012, 520, 1694-1697.   DOI
51 A.A. Harry, P. Albert, Nat. Mater, 2010, 9, 205-213.   DOI
52 M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt. Res. Appl, 2011, 19(1), 84-92.   DOI
53 M. Kumar, D. Ashish, A. Nirmal, V. Swaminathan, Q. Qiquan, Energy Environ. Sci, 2015, 8(11), 3134-3159.   DOI
54 S. Tulshi, R. Dhyey, P. Malkeshkumar, M. Indrajit, R. Abhijit, Mater. Chem. Phys, 2016, 171, 63-72.   DOI
55 J.J. Scragg, Copper zinc tin sulfide thin films for photovoltaics, synthesis and characterization by electrochemical methods. Springer-Verlag, Berlin Heiderberg, 2011.
56 A. Ennaoui, et al, Thin Solid Films, 2009, 517(7), 2511-2514.   DOI