• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.029 seconds

Demonstration Research of 3kW Solar Tracking PV System (3kW 추적형 태양광발전시스템의 실증연구)

  • Choi Y.O.;Kim J.H.;Bian W.J.;Lee S.Y.;Cho G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.561-563
    • /
    • 2006
  • This paper summarizes the results of these efforts by offering the PV generation system with solar tracking. The status of PV generation system with solar tracking components and interconnection and effects are semmarized. Hence this paper duscusses only points that might be useful for application.

  • PDF

A Development of the Solar Position Tracker on the Program Method for the Small Typed Stand-alone PV System Commercialization (소형 태양광 발전시스템 상용화를 위한 프로그램 방식의 태양위치추적기 개발)

  • 이양규;강신영;김광헌
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.260-265
    • /
    • 2003
  • The energy of PV system is different as the elevation and aximuth of the sun. This paper deals with the economical position tracking system development for the stand alone PV system. We have made more economical solar position tracking system which is used a tracking program than other similar systems. It is applied to the solar lighting lamp. We have made a comparative study of the energy amount between the fixed type and the tracking type during some period. The improved efficiency of the system is about 86 %.

Development of Solar Tracking using a Photovoltaic Sensor (광센서를 이용한 태양위치 추적장치 개발)

  • Chang, Hyun-jin;Jin, Taeseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1023-1025
    • /
    • 2012
  • Solar energy is rapidly gaining notoriety as an important means of expanding renewable energy resources. As such, it is vital that those in engineering fields understand the technologies associated with this area. My project will include the design and construction of a microcontroller-based solar panel tracking system. Solar tracking allows more energy to be produced because the solar array is able to remain aligned to the sun. This system builds upon topics learned in this course. Performance and usefulness of a solar tracking device that was designed and produced in this study was confirmed through experiments.

  • PDF

Development of a Solar Tracker using LabVIEW for the enhancement of Solar Energy Utilization (LabVIEW 적용 태양추적장치 개발과 태양에너지이용의 활성화)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Kuan, Chen;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.98-107
    • /
    • 2010
  • This paper introduces step by step procedures for the design, fabrication and operation of a solar tracking system. The system presented in this study consists of motion controllers, motor drives, step-motors, feedback devices and other accessories to support its functional stability. CdS sensors are used to constantly generate feedback signals to the controller, which assures a high-precision solar tracking even under adverse conditions. It enables instant correction if the system goes off track by strong winds causing gear backlash. A parabolic dish concentrator is mounted on the tracking system whose diameter was 30cm. The solar position data, in terms of azimuth and elevation, sunrise and sunset times were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

Performance Analysis on Solar Tracking Daylighting Systems Using Different Types of Solar Collectors: Parabolic Dish vs. Fresnel Lens (태양추적식 자연채광 장치의 집광기 종류에 따른 성능 분석: 포물 반사경 vs. 프레넬 렌즈)

  • Kim, Yeongmin;Kim, Won-Sik;Jeong, Hae-Jun;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • This paper presents the effect of solar collectors on the performance of solar tracking daylighting systems. A series of measurements were made for two different types of solar collectors mounted on double axis solar trackers: Parabolic dish concentrator and Fresnel Lens. Indoor light levels were measured at different locations of an office space (longitude: 126.33 E, latitude 33.45 N) as photo sensors were placed on a task plane 80 cm above the floor. To accurately monitor the applicability of the systems, measurements were performed under clear and overcast sky conditions with the roll-screen (on the south window) in the down position. Comparing the illuminance data, the system with Fresnel lens outperformed that of parabolic dish concentrator. On clear days, the former delivered the light levels of 400~600 lux on the task plane whereas the latter recorded 100~200 lux. Depending on the amount of cloud cover, on overcast days, illuminance readings fluctuated to some extent.

A Study of Collector Slope Angles for Acquiring Maximum Solar Radiation for Various Periods (최대 일사량 확보를 위한 기간별 집열 경사각 연구)

  • Cho, Yeong-Uk;Kim, Young-Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.492-497
    • /
    • 2011
  • The objective of this research is to study the variation of optimum slope angles of collectors for seven regions in Korea, which are Seoul, Gangneung, Daejeon, Daegu, Gwangju, Busan and Jeju. The results for 2000~2007 are analyzed to sec if adjustment of slope angles is necessary each year to receive maximum solar radiation. For an azimuth fixed solar collector, solar radiation of yearly optimized slope angle during May~Sept.(summer), Nov.~Mar.(winter) and the whole year are greater than the fixed slope angle by 0.03%, 0.02%, and 0.04%, respectively. For an azimuth tracking solar collector, solar radiation of yearly optimized slope angle during May~Sept.(slimmer), Nov.-Mar.(winter) and the whole year are greater than the fixed slope angle by 0.03%, 0.07%, and 0.04% respectively. It is unnecessary to adjust slope angles each year for both azimuth fixed and tracking collectors, since the gains are insignificant. Solar radiation of the azimuth tracking solar collector during May~Sept., Nov.~Mar. and the whole year are greater by 14.7%, 16.0%, and 19.2% than the azimuth fixed solar collector.

Solar Power Generation System with Hybrid Sun Tracker (하이브리드 광 추적방식의 태양광 발전 시스템)

  • Lee, Jae-Min;Kim, Yong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • This paper describes the design and implementation of hybrid sun tracking solar power generation system designed by combining astronomical data with optical tracking mechanism. The advantages of proposed power generation system are small amounts of calculation for tracking operations and enhancement of 40% of power generation at best. This system is able to track toward optimal position for maximum sun-lights under scattered lights due to clouds. The performance of implemented power generation system is confirmed by field experiments.

  • PDF

3-Dimensional Path Planning and Guidance for High Altitude Long Endurance UAV Including a Solar Power Model (태양광 전력모델을 포함한 장기체공 무인기의 3차원 경로계획 및 유도)

  • Oh, Su-hun;Kim, Kap-dong;Park, Jun-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • This paper introduces 3-dimensional path planning and guidance including power model for high altitude long endurance (HALE) UAV using solar energy. Dubins curve used in this paper has advantage of being directly available to apply path planning. However, most of the path planning problems using Dubins curve are defined in a two-dimensional plan. So, we used 3-dimensional Dubins path generation algorithm which was studied by Randal W. Beard. The aircraft model which used in this paper does not have an aileron. So we designed lateral controller by using a rudder. And then, we were conducted path tracking simulations by using a nonlinear path tracking algorithm. We generate examples according to altitude conditions. From the path tracking simulation results, we confirm that the path tracking is well on the flight path. Finally, we were modeling the power system of HALE UAVs and conducting path tracking simulation during 48hours. Modeling the amount of power generated by the solar cell through the calculation of the solar energy yield. And, we show the 48hours path tracking simulation results.

Research of the PV Tracking System (태양광 추적장치 연구)

  • Seo, Myeong-Hwan;Kim, Yoon-Sik;Hong, Jin-Woo;Lee, Hee-Joon;Park, Sang-Koo;Kim, Sun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2951-2957
    • /
    • 2010
  • In solar industry the development of tracking PV power generation devices progresses favorably because of its efficiency, comparing with fixed PV power generation devices. Tracking PV power generation device are not only preserving the amount of solar radiation per unit area but also maximizing the efficiency of solar battery. Therefore accurate and low-priced solar position tracking devices are very important to improve the economical efficiency and lower invest price. This research is concerned with solar position algorithm with uncertainties equal to 1 minute($0.016^{\circ}$) using the mathmatics and astronomg. Proposed algorithm in this paper, lowers the implementation price and improves power generation efficiency. In view of the result so far achieved, maximum error has 30 secend($0.008^{\circ}$). And the solar cell generating system applied by this algorithm showed the gain of the fixed type contrast average 23W(about 18%).