• 제목/요약/키워드: solar tower receiver

검색결과 23건 처리시간 0.024초

타워형 태양열 흡수기의 열전달 특성 실험장치에 관한 연구 (Scale Down Design on Experiment Facility of the Water/Steam Receiver for Solar Power Tower)

  • 서호영;김종규;강용혁;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.676-679
    • /
    • 2007
  • This paper describes an experiment facility to measure the circulation characteristics of a water/steam receiver at various heat fluxes. The natural circulation type receiver was considered in this study. The experiment facility was designed to satisfy circulation balance with an appropriate scale down. As a result, riser tube inner diameter was 7.4 mm and water circulation was 0.319 kg/s. Downcomer tube inner diameter by circulation balance was 9.52 mm and the quality was from 0 to 0.23.

  • PDF

고온 태양열 공기식 흡수기 충진재에 따른 열전달 성능분석 (Heat transfer performance with laminated mesh and honeycomb volumetric air receivers for the high-temperature solar power plant system)

  • 이주한;김용;전용한;서태범;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.184-187
    • /
    • 2006
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally the heat transfer characteristics become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, The experimental apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100mm, thickness; 1mm), honeycombs (diameter; 100mm, thickness; 30 mm) inserted out the heat transfer characteristics of the laminated mesh the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

  • PDF

타워형 태양열 발전용 공기흡수기의 열전달 성능해석 (Heat-Transfer Performance Analysis of a Multi-Channel Volumetric Air Receiver for Solar Power Tower)

  • 정의국
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.277-284
    • /
    • 2012
  • 타워형 태양열 발전용 체적식 공기흡수기의 열전달 성능 해석을 수행하였다. 타당한 관련문헌에 기초하여 채널 한 개의 벽과 공기 온도분포를 지정된 기하학적 크기와 입력조건에서 예측 할 수 있는 계산과정들이 제시되었다. 더 나아가서 흡수기 유용도의 수학적 모델이 온도프로파일 해석을 통해 유일하게 제시되었다. 흡수기 재질은 실리콘 카바이드이다. 공기 흐름을 유도하는 정사각형 직선채널 크기는 $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$이며, 모듈 한 개에는 225 개의 채널이 성형되었다. 일정한 일사량 및 공기유량 가정하에서 채널과 모듈 수의 변화에 따른 열전달량, 온도분포 및 유용도 추이가 제시되었다. 태양열 발전에 응용하기 위해서는 흡수기 출구 공기온도가 $700^{\circ}C$ 이상에 도달하여야 한다. 본 수치모델은 200 kW 급 타워형 태양열 공기흡수기의 설계에 사용되었으며, 지정된 기하학적 조건과 입력조건에서 요구되는 열전달 성능을을 만족하는 모듈 수를 얻을 수 있었다.

200kW 탑형 태양열발전시스템을 위한 헬리오스타트 필드 운영 알고리즘의 헬리오스타트 반사목표점 할당 방안 개발 (Development of Heliostat Aiming Point Allocation Scheme in Heliostat Field Control Algorithm for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.21-29
    • /
    • 2014
  • Heliostat field control algorithm is the logics to operate the heliostat field of tower type solar thermal power plant and it could include various methodologies of how to control the heliostat field so as to optimize the energy collection efficiency as well as to reduce the system operating cost. This work, as the first part of the consecutive works, presents heliostat aiming mint allocation scheme which will be used in the heliostat field control algorithm for 200kW solar thermal power plant built in Daegu, Korea. We first discuss the structure of heliostat field control system required for the implementation of aiming scheme developed in this work. Then the methodologies to allocate the heliostat aiming points on the receiver are discussed. The simulated results show that the heliostat aiming point allocation scheme proposed in this work reduces the magnitude of peak heat flux on the receiver more than 40% from the case of which all the heliostats in the field aim at the center of receiver simultaneously. Also it shows that, when the proposed scheme is used, the degradation of heliostat field optical efficiency is relatively small from the maximal optical efficiency the heliostat field could have.

태양 복사에너지 충진재 변화에 따른 고온 태양열 공기식 흡수기의 열전달 성능 해석 (Heat transfer performance with different fills as volumetric air receivers for concentrated solar radiative energy)

  • 이주한;김용;전용한;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.71-78
    • /
    • 2007
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally, these become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, the apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100 mm, thickness; 1 mm), honeycombs (diameter; 100 mm, thickness; 30 mm) inserted into ceramic tube (inside diameter; 100 mm, outside diameter; 120 mm, length: 1000 mm). To apply heat to the receiver, an electric heater is used. To find out the heat transfer characteristics of the laminated mesh, the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90 mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

200kW 타워형 태양열발전시스템의 헬리오스타트 필드 운영 알고리즘 개발 (Development of Heliostat Field Operational Algorithm for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.33-41
    • /
    • 2014
  • Heliostat field in a tower type solar thermal power plant is the sun tracking mirror system which affects the overall efficiency of solar thermal power plant most significantly while consumes a large amount of energy to operate it. Thus optimal operation of it is very crucial for maximizing the energy collection and, at the same time, for minimizing the operating cost. Heliostat field operational algorithm is the logics to control the heliostat field efficiently so as to optimize the heliostat field optical efficiency and to protect the system from damage as well as to reduce the energy consumption required to operate the field. This work presents the heliostat field operational algorithm developed for the heliostat field of 200kW solar thermal power plant built in Daegu, Korea. We first review the structure of heliostat field control system proposed in the previous work to provide the conceptual framework of how the algorithm developed in this work could be implemented. Then the methodologies to operate the heliostat field properly and efficiently, by defining and explaining the various operation modes, are discussed. A simulation, showing the heat flux distribution collected by the heliostat field at the receiver, is used to show the usefulness of proposed heliostat field operational algorithm.

중국 1 MWe급 태양열발전시스템에 대한 기초 운전해석 (Preliminary Simulation Study on 1 MWe STP System in China)

  • ;;강용혁;김종규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.698-701
    • /
    • 2007
  • DAHAN, the first 1 MWe Solar Power Tower system locates north to Beijing where nearby The Great Wall is now under construction with cooperation between China and Korea. Results in predicting the preliminary performance of this central receiver system are presented in this paper. Operating cycles under some typical weather condition days are simulated and commented. These results can be used to assess the impact of alternative plant designs or operating strategies on annual energy production, with the final objective being to optimize the design of central receiver power plants. Two subsystems are considered in the system simulation: the solar field and the power block. Mathematic models are used to represent physical phenomena and relationships so that the characteristics of physical processes involving these phenomena can be predicted. Decisions regarding the best position for locating heliostats relative to the receiver and how high to place the receiver above the field constitute a multifaceted problem. Four different kinds of field layout are designed and analyzed by the use of ray tracing and mathematical simulation techniques to determine the overall optical performance ${\eta}_{field}$ and the spillage ${\eta}_{spill}$.The power block including a Rankine cycle is analyzed by conventional energy balance methods.

  • PDF

200kW 탑형 태양열발전시스템의 Heliostat Field 설계 (Design of Heliostat Field for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.41-51
    • /
    • 2012
  • Heliostat field is the most important subsystem in the tower type solar thermal power plant since its optical performance affects the total system efficiency most significantly while the construction cost of it is the major part of total construction cost in such a power plant. Thus a well designed heliostat field to maximize the optical efficiency as well as to minimize the land usage is very important. This work presents methodology, procedures and result of heliostat filed design for 200kW solar thermal power plant built recently in Daegu, Korea. A $2{\times}2(m)$ rectangular shaped receiver located at 43(m) high and tilted $28^{\circ}$ toward heliostat field, 450 of heliostats of which the reflective surface is formed by 4 of $1{\times}1(m)$ flat plate mirror facet, and the land area having about $140{\times}120(m)$ size are used to form the heliostat field. A procedure to deploy 450 heliostats in radial staggered nonblocking formation is developed. Also the procedures to compute the cosine effect, intercept ratio, blocking and shading ratio in the field are developed. Finally the heliostat filed is designed by finding the optimal radial distance and azimuthal spacing in radial staggered nonblocking formation such that the designed heliostat field optical efficiency could be maximized. The designed heliostat field has 77% of annual average optical efficiency, which is obtained by annually averaging the optical efficiencies computed between the time of where sun elevation angle becomes $10^{\circ}$ after sunrise and the time of where sun elevation angle becomes $10^{\circ}$ before sunset in each day.

확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링 (Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter)

  • 이상은;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.