• Title/Summary/Keyword: solar term

Search Result 411, Processing Time 0.027 seconds

The Analysis of a Potential Solar Energy Resource Map (태양에너지 가용잠재량 자원지도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.573-579
    • /
    • 2012
  • Many countries have recently been expanding efforts for low-carbon global economy to solve the problem of global warming. Development and research for various types of new reusable energy is on the rise throughout the world. The most promising source of energy is the solar photovoltaic energy and the government take an initiative to establish both short-term and long-term policies to develop the solar energy potential resource map. The solar energy and industrialize area researched by GIS methods for optimum site for solar power transfer system. This study attempts to address the hot issue of the development and suitability of the solar photovoltaic energy site using GIS spatial analysis. We need to analyze and describe the solar technology, green energy policies and the energy market trend of the field.

Temperature Changes of Climatic Solar Terms and Their Spatiotemporal Characteristics in South Korea (우리나라 기후 절기별 기온 변화의 시공간적 특성 분석)

  • Jin, Mi Jeong;Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.23-36
    • /
    • 2015
  • The temperature change patterns of climatic solar terms and their climatic fitness were analyzed. Harmonic analysis based on thirty-year(1981-2010) time-series data from sixty one weather stations across South Korea showed that the central peaks of the extreme heat had shifted toward start of autumn with increasing mean temperature. The overall climatic fitness of solar terms, such as major heat, frost descent, major snow, and major cold, was low, and it showed significant regional variations. The actual meteorological phenomenon representing each climatic solar term was observed much later than the day of the solar term at most weather stations. The number of observations, where an actual meteorological condition for each climatic solar term was recorded within ${\pm}1$ week from the day of that solar term, ranged only from 7.7% to 40.4% of the entire data. Study results also showed that the climatic fitness of major heat, frost descent, and major snow gradually changed in the east-west direction. Major cold, a solar term with higher climatic fitness, was influenced more strongly by latitude than longitude. Considering geographically uneven magnitude and trends in temperature changes, rearrangement and adjustment of time intervals between the solar terms may help us improve their applicability as realistic indicators of seasonal changes.

  • PDF

Long-term Experiments of the Cooling/Cleaning on the surface of the PV Power Array (태양광발전 어레이 표면의 냉각/세정에 대한 장기 실증 실험)

  • Han, Jun-Sun;Kim, Yi-Hyun;Ji, Hee-Kwan;Yu, Sang-Phil
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.248-254
    • /
    • 2012
  • In the situation of expanding domestic solar power supply business long-term performance modeling of a proposed solar-cooling and cleaning system to increase electromotive force and light transmission is carried out to test the effectiveness of the system. To test the effectiveness of the system, the data which comparing the solar power planet installing the system to not installing at the same time is used. A difference between the utilization factor of each comparison group were recorded. Approximately from one year to two years Field Test was performed, Result of apply to cooling/cleaning technology, Each of plant by From least 7 percent up to 16 percent utilization factor increased, and the cooling / cleaning is output through improved as a result of the determined.

  • PDF

Evaluation of long-term performance for single-stage desalination system with solar energy (태양에너지 해수담수화 실증시스템 장기 운전 열성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

Mid- and Short-term Power Generation Forecasting using Hybrid Model (하이브리드 모델을 이용하여 중단기 태양발전량 예측)

  • Nam-Rye Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

The Effect of Sealing Technology on the Long-Term Stability of Dye-Sensitized Solar Cell Module (염료감응 태양전지 모듈의 장기안정성 향상을 위한 실링기술 연구)

  • Lee, Kwangsoo;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.155-158
    • /
    • 2016
  • Long-term stability of dye-sensitized solar cell (DSSC) module is critical for the commercialization. We investigated the effect of sealing technology on the long-term stability of the $10cm{\times}11cm$ sized DSSC modules. We applied the concept of secondary sealing to the module and then performed several stability tests such as humidity cycle, 1 sun light soaking and outdoor stability tests. The enhanced stability was confirmed for the DSSC module employing optimized sealing materials and architectures.

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

A Study on Contant Power Control for Virtual Implementation of Solar Cell (태양전지의 가상구현을 위한 정전력제어에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.10-13
    • /
    • 2000
  • This paper proposes the virtual implementation of solar cell(VISC) for photovoltaic system. It is required to make operation condition of solar cell arrays where is the limit of time and space, The main advantage of the simulator is its ability to simulate different types and sizes of arrays considering V-I characteristics of data sheet. The VISC with buch-boost converter can be used to study the short-term and long-term performances of PV cells. The simulator is a far more cost effective and reliable replacement for field and filight testing.

  • PDF

An Experimental Study on Daily Efficiency of Solar Collector with Heating Loads of Solar Water Heating System (부하를 고려한 태양열온수시스템의 일간 집열효율에 대한 실험적 분석)

  • Lee, Kyoung-Ho;Joo, Hong-Jin;Yoon, Eung-Sang;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • This paper describes an experimental study on efficiency of solar collector in solar water heating system connected to hourly water heating load. In general, the functional form of solar efficiency is expressed as a function of fluid temperature entering solar collector, ambient temperature, and solar irradiance. When energy saving from solar heating of water heating system is analyzed on along-term basis such as one year with given solar irradiance data, simplified analysis is more convenient han detailed system simulation for quick assessment. However, the functional form of the efficiency is not convenient for approximately simplified energy analysis because the inlet temperature can be obtained through a detailed system simulation. In the study, solar collector efficiency is obtained with various daily water heating load sand daily solar irradiance using experimental tests. The study also considers large residential buildings such as apartment buildings for application of solar water heating systems. From test results, it is found that daily solar collector efficiency is proportional to daily water heating loads and daily solar irradiance. The data obtained from the study can be utilized to find a functional relation between daily solar irradiance and daily heating load in stead of collector inlet temperature for application of solar collector efficiency to long-term approximated energy analysis of solar heating system.

Characteristic analysis of solar radiation and atmospheric transmissivity at Chupungryeong (추풍령의 일사량과 대기투과율의 특성 분석)

  • Park, Jin Ki;Kim, Bong Seop;Park, Jong Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • The surface solar radiation is an important indicators for climate and agricultural research over the Earth system. For the climate and agricultural research, long-term meteorological data and accurate measured data are needed. The daily solar radiation from Jan. 2001 to Dec. 2010 have been employed in this study analyze atmospheric transmissivity for Chupungryeong. The corresponding daily value of atmospheric transmissivity is calculated for Chupungryeong meteorological data. In this paper, relationship analysis of daily solar radiation and atmospheric transmissivity is presented. It shows that atmospheric transmissivity over late December peaked in the 2000s, substantially decreased from the early-January, and changed little after that in summer. Reduction of solar radiation caused a reduction of more than 0.3 in atmospheric transmissivity during July to August. It was concluded that the atmospheric transmissivity could be very useful for evaluating solar radiation. Atmospheric transmissivity approach is suitable for daily-term simulation studies and useful for computing solar radiation.