• 제목/요약/키워드: solar system:formation

검색결과 81건 처리시간 0.032초

플라즈마 도핑을 이용한 결정질 태양전지 에미터층 형성 연구 (A Study on Emitter layer by Plasma Doping for Crystalline Silicon Solar Cells)

  • 유동열;노시철;최정호;김정환;서화일;김영철
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.61-64
    • /
    • 2011
  • In order to grow the crystalline solar cells industry continuously, development of alternate low-cost manufacturing processes is required. Plasma doping system is the technique for introducing dopants into semiconductor wafers in CMOS devices. In photovoltaics, plasma doping system could be an interesting alternative to thermal furnace diffusion processes. In this paper, plasma doping system was applied for phosphorus doping in crystalline solar cells. The Plasma doping was carried out in 1~4 KV bias voltages for four minutes. For removing surface damage and formation of pn junction, annealing steps were carried out in the range of $800{\sim}900^{\circ}C$ with $O_2$ ambient using thermal furnace. The junction depth in about $0.35{\sim}0.6{\mu}m$ range have been achieved and the doping profiles were very similar to emitter by thermal diffusion. So, It could be confirmed that plasma doping technique can be used for emitter formation in crystalline solar cells.

THE ORIGINAL ENVIRONMENT OF THE SOLAR SYSTEM INFERRED FROM THE OXYGEN ISOTOPE ANOMALIES

  • Lee, Jeong-Eun;Bergin, Edwin A.;Lyons, James R.
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.107-111
    • /
    • 2007
  • The original environment of the solar system can be inferred by studying the oxygen isotope ratios in the Sun as well as in primitive meteorites and comets. The oxygen isotopic fractionation measured in primitive meteorites is mass-independent, which can be explained by the isotopic-selective photodissociation of CO. The isotopic-selective photodissociation model in a collapsing cloud by Lee et al. (2007) imply the birth of the Sun in a stellar cluster with an enhanced radiation field, which is consistent with the inferred presence of $^{60}Fe$.

결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구 (Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells)

  • 김범호;최준영;이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Research on Solar System Small Bodies using the Korean Small Telescopes Network

  • Ishiguro, Masateru
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.60.4-60.4
    • /
    • 2019
  • Small bodies in the solar system are pristine leftovers of planetesimals since the formation epoch (~4.6 Gyr ago). After the formation, icy planetesimals have been preserved in the distant cold place beyond 30 au (i.e., Trans-Neptunian region) until recently without any catastrophic processes but have just been injected into inner region (<~5 au from the Sun) to be observed as comets. On the contrary, asteroids are rocky primitive objects (although some of them contains icy volatiles) distributing in the mainbelt between Mars and Jupiter orbits. Because of frequent encounters in the mainbelt, asteroids have experienced a number of repeated impacts until the present day. Namely, it is important to investigate thermal alternation process of cometary volatiles and refractories in the solar radiation field, whereas collisional and subsequence phenomena of asteroidal bodies. Although recent spacecraft observations revealed the physical natures on the surfaces of comets and asteroids, their interiors still remain largely unexplored. It is likely that a sudden brightening of a comet is associated with rapid sublimation of internal CO and CO2 or phase transition of amorphous H2O. An episodic dust ejection from an asteroid is causally related to an impact among asteroids, sudden sublimation of remaining subsurficial volatiles, etc. Because these transient phenomena provide rare opportunities to investigate their interiors, immediate observations using any optical instruments are particular important. In my presentation, I will review some examples of such transient phenomena in the solar system and propose possible collaborative research using the Korean Small Telescope Network.

  • PDF

고효율 태양전지의 저가화를 위한 Ni/Cu/Ag 전극의 Ni Silicide 형성에 관한 연구 (Investigation of Ni Silicide formation at Ni/Cu/Ag Contact for Low Cost of High Efficiency Solar Cell)

  • 김종민;조경연;이지훈;이수홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.230-234
    • /
    • 2009
  • It is significant technique to increase competitiveness that solar cells have a high energy conversion efficiency and cost effectiveness. When making high efficiency crystalline Si solar cells, evaporated Ti/Pd/Ag contact system is widely used in order to reduce the electrical resistance of the contact fingers. However, the evaporation process is no applicable to mass production because high vacuum is needed. Furthermore, those metals are too expensive to be applied for terrestrial applications. Ni/Cu/Ag contact system of silicon solar cells offers a relatively inexpensive method of making electrical contact. Ni silicide formation is one of the indispensable techniques for Ni/Cu/Ag contact sytem. Ni was electroless plated on the front grid pattern, After Ni electroless plating, the cells were annealed by RTP(Rapid Thermal Process). Ni silicide(NiSi) has certain advantages over Ti silicide($TiSi_2$), lower temperature anneal, one step anneal, low resistivity, low silicon consumption, low film stress, absence of reaction between the annealing ambient. Ni/Cu/Ag metallization scheme is an important process in the direction of cost reduction for solar cells of high efficiency. In this article we shall report an investigation of rapid thermal silicidation of nickel on silngle crystalline silicon wafers in the annealing range of $350-390^{\circ}C$. The samples annealed at temperatures from 350 to $390^{\circ}C$ have been analyzed by SEM(Scanning Electron Microscopy).

  • PDF

The Solar Nebular on Fire: A Solution to the Carbon Deficit in the Inner Solar System

  • 이정은
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • Despite a surface dominated by carbon-based life, the bulk composition of the Earth is dramatically carbon poor when compared to the material available at formation. Bulk carbon deficiency extends into the asteroid belt representing a fossil record of the conditions under which planets are born. The initial steps of planet formation involve the growth of primitive sub-micron silicate and carbon grains in the Solar Nebula. We present a solution wherein primordial carbon grains are preferentially destroyed by oxygen atoms ignited by heating due to stellar accretion at radii < 5 AU. This solution can account for the bulk carbon deficiency in the Earth and meteorites, the compositional gradient within the asteroid belt, and for growing evidence for similar carbon deficiency in rocks surrounding other stars.

  • PDF

결정질 실리콘 태양전지의 저가 고 효율화를 위한 Ni/Cu/Ag 전극 태양전지 (The Research of Ni/Cu/Ag Contact Solar Cells for Low Cost & High Efficiency in Crystalline Solar Cells)

  • 조경연;이지훈;이수홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.214-219
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cells, If high-efficiency solar cells are to be commercialized. It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper and Silver are applied widely in various electronic manufactures as easily formation is available by plating. The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposite the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 14.68 % on $0.2{\sim}0.6{\Omega}{\cdot}cm,\;20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

결정질 실리콘 태양전지에 적용될 도금전극 특성 연구 (Investigation of Plated Contact for Crystalline Silicon Solar Cells)

  • 김범호;최준영;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Effects of Ligand-exchanged Cadmium Selenide Nanoparticles on the Performance of P3HT:PCBM:CdSe Ternary System Solar Cells

  • Park, Eung-Kyu;Fu, Honghong;Choi, Mijung;Luan, Weiling;Kim, Yong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2321-2324
    • /
    • 2013
  • An improved hybrid solar cell was obtained by focusing on the effects of ligand for CdSe nanoparticles, in the active layers. The performance was compared by mixing nanoparticles capped with pyridine or oleic acid for the acceptor material into poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester based active layer. The solar cells with pyridine capped CdSe nanoparticles showed a power conversion efficiency of 2.96% while oleic acid capped CdSe nanoparticles showed 2.85%, under AM 1.5G illumination. Formation of percolation pathways for carrier transport and a reduction in the hopping event resulted in better performance of pyridine capped nanoparticles.

Spatial and Statistical Properties of Electric Current Density in the Nonlinear Force-Free Model of Active Region 12158

  • 강지혜
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.46.1-46.1
    • /
    • 2016
  • The formation process of a current sheet is important for solar flare from a viewpoint of a space weather prediction. We therefore derive the temporal development of the spatial and statistical distribution of electric current density distributed in a flare-producing active region to describe the formation of a current sheet. We derive time sequence distribution of electric current density by applying a nonlinear force-free approximation reconstruction to Active Region 12158 that produces an X1.6-class flare. The time sequence maps of photospheric vector magnetic field used for reconstruction are captured by a Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamic Observatory (SDO) on 10th September, 2014. The spatial distribution of electric current density in NLFFF model well reproduce observed sigmoidal structure at the preflare phase, although a layer of high current density shrinks at the postflare phase. A double power-law profile of electric current density is found in statistical analysis. This may be expected to use an indicator of the occurrence of a solar flare.

  • PDF