Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.8.2321

Effects of Ligand-exchanged Cadmium Selenide Nanoparticles on the Performance of P3HT:PCBM:CdSe Ternary System Solar Cells  

Park, Eung-Kyu (School of Electronic and Electrical Engineering, Sungkyunkwan University)
Fu, Honghong (School of Mechanical and Power Engineering, East China University of Science and Technology)
Choi, Mijung (MLB Lab, Korea circuit Co. Ltd.)
Luan, Weiling (School of Mechanical and Power Engineering, East China University of Science and Technology)
Kim, Yong-Sang (School of Electronic and Electrical Engineering, Sungkyunkwan University)
Publication Information
Abstract
An improved hybrid solar cell was obtained by focusing on the effects of ligand for CdSe nanoparticles, in the active layers. The performance was compared by mixing nanoparticles capped with pyridine or oleic acid for the acceptor material into poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester based active layer. The solar cells with pyridine capped CdSe nanoparticles showed a power conversion efficiency of 2.96% while oleic acid capped CdSe nanoparticles showed 2.85%, under AM 1.5G illumination. Formation of percolation pathways for carrier transport and a reduction in the hopping event resulted in better performance of pyridine capped nanoparticles.
Keywords
CdSe NPs; Ligand-exchange; Organic solar cell; Ternary system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.   DOI   ScienceOn
2 Truong, N. T. N.; Kim, W. K.; Park, C. Sol. Energy Mater. Sol. Cells 2011, 95, 167.   DOI   ScienceOn
3 Yang, H.; Luan, W.; Tu, S.; Wang, Z. M. Crystal Growth and Design. 2009, 9, 1569.   DOI   ScienceOn
4 Fu, H.; Choi, M.; Luan, W.; Kim, Y. S.; Tu, S. T. Solid-State Electronics 2012, 69, 50.   DOI   ScienceOn
5 Vanlaeke, P.; Swinnen, A.; Haeldermans, I.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; D'Heaen, J.; Heremans, P.; Poortmans, J.; Manca, J. V. Sol. Energy Mater. Sol. Cells 2006, 90, 2150.   DOI   ScienceOn
6 Baek, W. H.; Yoon, T. S.; Lee, H. H.; Kim, Y. S. Organic Electronics 2010, 11, 933.   DOI   ScienceOn
7 Kalyuzhny, G.; Murray, R. W. J. Phys. Chem. B 2005, 109, 7012.   DOI   ScienceOn
8 Baek, W. H.; Choi, M.; Yoon, T. S.; Lee, H. H.; Kim, Y. S. Appl. Phys. Lett. 2010, 96, 133506.   DOI   ScienceOn
9 Bang, J. H.; Kamat, P. V. American Chemical Society 2011, 5, 9421.
10 Lokteva, I.; Radychev, N.; Witt, F.; Borchert, H.; Parisi, J.; Kolny- Olesiak, J. Phys. Chem. C 2010, 114, 12784.   DOI   ScienceOn
11 Derbal-Habak, H.; Bergeret, C.; Cousseau, J.; Nunzi, J. M. Sol. Energy Mater. Sol. Cells 2011, 95, S53.   DOI   ScienceOn
12 Klimov, V. I. J. Phys. Chem. B 2000, 104, 6112.   DOI   ScienceOn
13 Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H.; Parisi, J. Phys. Chem. C 2011, 115, 14111.   DOI   ScienceOn
14 Baek, W. H.; Yang, H.; Yoon, T. S.; Kang, C. J.; Lee, H. H.; Kim, Y. S. Sol. Energy Mater. Sol. Cells 2009, 90, 1263.
15 Kim, K.; Liu, J.; Namboothiry, M. A. G.; Carroll, D. L. Appl. Phys. Lett. 2007, 90, 163511.   DOI
16 Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J.; Wienk, M. M.; Kroon, M. J.; Michels, M. A. J.; Janssen, R. A. J. Nono Lett. 2005, 5, 579.   DOI   ScienceOn
17 Kim, Y.; Choulis, S. A.; Nelson, J.; Cook, S.; Bradley, D. D. C.; Durrant, J. R. Appl. Phys. Lett. 2005, 86, 063502.   DOI   ScienceOn
18 Li, G.; Yao, Y.; Yang, H.; Shirotriya, V.; Yang, G.; Yang, Y. Adv. Funct. Mater. 2007, 17, 1636.   DOI   ScienceOn
19 Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.   DOI   ScienceOn