DOI QR코드

DOI QR Code

THE ORIGINAL ENVIRONMENT OF THE SOLAR SYSTEM INFERRED FROM THE OXYGEN ISOTOPE ANOMALIES

  • Lee, Jeong-Eun (Department of Astronomy and Space Science, Sejong University) ;
  • Bergin, Edwin A. (Department of Astronomy, The University of Michigan) ;
  • Lyons, James R. (Institute of Geophysics and Planetary Physics, Department of Earth and Space Sciences, University of California)
  • Published : 2007.12.31

Abstract

The original environment of the solar system can be inferred by studying the oxygen isotope ratios in the Sun as well as in primitive meteorites and comets. The oxygen isotopic fractionation measured in primitive meteorites is mass-independent, which can be explained by the isotopic-selective photodissociation of CO. The isotopic-selective photodissociation model in a collapsing cloud by Lee et al. (2007) imply the birth of the Sun in a stellar cluster with an enhanced radiation field, which is consistent with the inferred presence of $^{60}Fe$.

Keywords

References

  1. Bonnar, W. B. 1956, Boyle's law and gravitational instability, MNRAS, 116, 351 https://doi.org/10.1093/mnras/116.3.351
  2. Bergin, E.A. & Tafalla, M. 2007, Cold dark clouds: The initial conditions for star formation, ARA&A, 45, 339 https://doi.org/10.1146/annurev.astro.45.071206.100404
  3. Ciesla, F. J. ,& Cuzzi, J. N. 2006, The evolution of the water distribution in a viscous protoplanetary disk, Icarus, 181, 178 https://doi.org/10.1016/j.icarus.2005.11.009
  4. Clayton, R. N., Grossman, L., & Mayeda, T.K. 1973, A Component of primitive nuclear composition in carbonaceous meteorites, Science, 182, 485 https://doi.org/10.1126/science.182.4111.485
  5. Clayton, R. N. 2002, Physics: Oxygen drips upwards from superconductors, Nature, 415, 860
  6. Cuzzi, J. N., & Zahnle, K. J. 2004, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts, ApJ, 614, 490 https://doi.org/10.1086/423611
  7. Ebert, R. 1955, Z. Astrophys., 37, 217
  8. Eberhardt, P., Reber, M., Krankowsky, D., & Hodges R. R. 1995, The D/H and $^{18}O/^{16}O$ ratios in water from comet P/Halley, A&A, 302, 301
  9. Ecuvillon, A., Israelian, G., Santos, N. C., Mayor, M., & Gilli, G. 2006, Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?, A&A, 449, 809 https://doi.org/10.1051/0004-6361:20054534
  10. Evans, N. J. II, Rawlings, J. M. C., Shirely, Y. L., & Mundy, L. G. 2001, Tracing the Mass during LowMass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores, ApJ, 557, 193 https://doi.org/10.1086/321639
  11. Furlan, E., Calvet, N., D'Alessio, P., Hartmann, L., Forrest, W. J., Watson, D.M., Uchida, K.L., Sargent, B., Green, J.D., & Herter, T. L. 2006, A survey and analysis of Spitzer infrared spectrograph spectra of T Tauri stars in Taurus, ApJS, 165, 568 https://doi.org/10.1086/505468
  12. Gounelle, M. 2006, The origin of short-lived radionuelides in the solar system, New Astronomy Reviews, 50, 596 https://doi.org/10.1016/j.newar.2006.06.053
  13. Hartmann, L. 1998, Accretion processes in star formation, (Cambridge: Univ. of Cambridge Press)
  14. Hashizume, K., & Chaussidon M. 2005, A nonterrestrial $^{16}O$-rich isotopic composition for the protosolar nebula, Nature, 434, 619 https://doi.org/10.1038/nature03432
  15. Kobayashi, S., Imai, H., & Yurimoto, H. 2003, Geochem. J., 37, 663 https://doi.org/10.2343/geochemj.37.663
  16. Lada, C. J. & Lada, E. A. 2003, Embedded clusters in molecular clouds, ARA&A, 41, 57 https://doi.org/10.1146/annurev.astro.41.011802.094844
  17. Lee, J.-E., Bergin, E.A., & Evans, N.J. II 2004, Evolution of chemistry and molecular line profiles during protostellar collapse, ApJ, 617, 360 https://doi.org/10.1086/425153
  18. Lee, J.-E., Bergin, E. A., & Lyons, J. R. 2007, submitted to M&PS
  19. Lyons, J. R., & Young, E. D. 2005, CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula, Nature, 435, 317 https://doi.org/10.1038/nature03557
  20. Ouellette, N., Desch, S. J., Hester, J. J., & Leshin, L. A. 2005, A nearby supernova injected short-lived radionuclides into our protoplanetary disk, in Chondrites and the Protoplanetary Disk, (eds.) A. N. Krot, E. R. D. Scott, & B. Reipurth, ASP. v.341 p.527
  21. Sakamoto, N., Seto, Y., Itoh, S., Kuramoto, K., Fujino, K., Nagashima, K., Krot, A. N., & Yurimoto, H. 2007, Remnants of the early solar system water enriched in heavy oxygen isotopes, Science, 317, 231 https://doi.org/10.1126/science.1142021
  22. Shu, F.R. 1977, Self-similar collapse of isothermal spheres and star formation, ApJ, 214, 488
  23. Terebey, S., Shu, F. R., & Cassen, P. 1984, The collapse of the cores of slowly rotating isothermal clouds, ApJ, 286, 529 https://doi.org/10.1086/162628
  24. Yurimoto, H. & Kuramoto, K. 2004, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system, Science, 305, 1763 https://doi.org/10.1126/science.1100989
  25. Yurimoto, R., Kuramoto, K., Krot, A. N., Scott, E. R. D., Cuzzi, J. N., Thiemens, M. R., & Lyons, J. R. 2007, Origin and evolution of oxygen-isotopic compositions of the solar system, in Protostars and planets V, (eds.) B. Reipurth, D. Jewitt & K. Kiel (Tucson: Univ. of Arizona), p.849
  26. Wadhwa, M., Amelin, Y., Davis, A. M., Lugmair, G. W., Meyer, B., Gounelle, M., & Desch S. J. 2007, From dust to planetesimals: Implications for the solar protoplanetary disk from short-lived radionuclides, in Protostars and planets V, (eds.) B. Reipurth, D. Jewitt & K. Kiel (Tucson: Univ. of Arizona), p.835