• 제목/요약/키워드: solar observation

검색결과 371건 처리시간 0.025초

SOLAR SHORT-PERIOD OSCILLATIONS EXCITED BY A SMOOTH FORCE

  • CHANG HEON-YOUNG
    • 천문학회지
    • /
    • 제36권2호
    • /
    • pp.67-72
    • /
    • 2003
  • The basic objective of helioseismology is to determine the structure and the dynamics of the Sun by analysing the frequency spectrum of the solar oscillations. Accurate frequency measurements provide information that enables us to probe the solar interior structure and the dynamics. Therefore the frequency of the solar oscillation is the most fundamental and important information to be extracted from the solar oscillation observation. This is why many efforts have been put into the development of accurate data analysis techniques, as well as observational efforts. To test one's data analysis method, a realistic artificial data set is essential because the newly suggested method is calibrated with a set of artificial data with predetermined parameters. Therefore, unless test data sets reflect the real solar oscillation data correctly, such a calibration is likely incomplete and a unwanted systematic bias may result in. Unfortunately, however, commonly used artificial data generation algorithms insufficiently accommodate physical properties of the stochastic excitation mechanism. One of reason for this is that it is computaionally very expensive to solve the governing equation directly. In this paper we discuss the nature of solar oscillation excitation and suggest an efficient algorithm to generate the artificial solar oscillation data. We also briefly discuss how the results of this work can be applied in the future studies.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

태양플레어망원경의 관측 시스템 (OBSERVATION SYSTEM OF SOLAR FLARE TELESCOPE)

  • 박영득;문용재;장비호;심경진
    • 천문학논총
    • /
    • 제12권1호
    • /
    • pp.35-45
    • /
    • 1997
  • SOFT($\underline{So}lar\;\underline{F}lare\;\underline{T}elescope$) installed at BOAO(Bohyunsan Optical Astronomy Observatory) is purposed for observing solar active regions using four refractors on single mount with a $400"\times300"$ field of view: Two refractors with a diameter of 15cm(f15) are observe the white light and $H\alpha$, and the other two refractors with a diameter of 20cm(f8) are observe the magnetic field distribution and Doppler shifts at the solar chromosphere. Three Lyot filters, one of the most important observational instruments, are installed on the optical rails for VMG, LMG, and $H\alpha$ that possible to very narrow pass band observation under high precision stability of temperature. From the combination of KD*P and quarter wave plate in the Lyot filter possible observe the magnetic fields strength and doppler shifts by using the characteristics of polarization components. In this paper, we introduce the basic characteristics, optical system, and monitor system of the SOFT.

  • PDF

NEW DIGITAL H$\alpha$ OBSERVATION BY SOLAR FLARE TELESCOPE AT BOAO

  • LEE C.-W.;MOON Y.-J.;PARK Y.D.;JANG B.-H.;KIM KAP-SUNG
    • 천문학회지
    • /
    • 제34권2호
    • /
    • pp.111-117
    • /
    • 2001
  • Recently, we have set up a new digital CCD camera system, MicroMax YHS-1300 manufactured by Roper Scientific for Ha observation by Solar Flare Telescope at Bohyunsan Optical Astronomy Observatory. It has a 12 bit dynamic range, a pixel number of 1300$\times$1030, a thermoelectric cooler, and an electric shutter. Its readout speed is about 3 frames per second and the dark current is about 0.05 e-/p/s at $-10^{\circ}C$. We have made a system performance test by confirming the system linearity, system gain, and system noise that its specification requires. We have also developed a data acquisition software which connects a digital camera con-troller to a PC and acquires H$\alpha$ images via Microsoft Visual C++ 6.0 under Windows 98. Comparisons of high quality H$\alpha$ images of AR 9169 and AR 9283 obtained from SOFT with the corresponding images from Learmonth Solar Observatory in Australia confirm that our H$\alpha$ digital observational system is performed properly. Finally, we present a set of H$\alpha$ images taken from a two ribbon flare occurred in AR 9283.

  • PDF

MLPO 방법을 이용한 태양광 발전의 MPPT 제어 (MPPT Control of Photovoltaic Generation Using MLPO Method)

  • 최정식;정동화
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2064-2075
    • /
    • 2011
  • In this paper, robust multi-level perturbation and observation (MLPO) maximum power point tracking (MPPT) control are presented of the environmental change including the solar radiation and temperature. Because the maximum power point of the Photovoltaic (PV) is changing according to the solar radiation and temperature, the technology which traces the maximum power point in order to increase the power efficiency is recognized as the very important part. The general requirement for the MPPT is that system is simple, the cost is inexpensive, the PV tracking function and output change are small. Conventional perturbation and observation (PO) method is a simple system but there is the disadvantage that an efficiency of system becomes low. In addation, the incremental conductance (IC) control is required expensive CPU because of a large of calculations. In order to solve this problem, in this paper, the MLPO MPPT control using the method diversifying the step size according to the environment condition is presented. The validity of the MLPO method presenting from this paper is proved through analyzing the solar power generation output error at the steady state.

COMS 특별세션 (THERMAL CONTROL DESIGN FOR COMS)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

계통연계헝 태양광인버터의 PV Array 출력리플 저감을 위한 연구 (Study for Reducing Ripples of the PV Array Output in Grid-Connected Photovoltaic Power System)

  • 김희중;정용호;이기수;전영수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.202-205
    • /
    • 2006
  • In the PV power system, output of the PV array must contain inherent ripples due to the single-phase inverter. So the function of maximum power point tracking to increase the output efficiency of PV system is degraded. Therefore, to overcome this problem, this paper presents a control strategy for the reducing ripples of the PV array output in grid-connected photovoltaic power system. The proposed control system consists of two loops the maximum power point tracking loop using the perturbation and observation method is used to calculate the reference solar array terminal voltage(Vref) for reducing ripples of the PV array output and the PI control loop is used to regulate the solar array output voltage according to the Vref. The performance of proposing control strategy is analyzed by means of the PSCAD/EMTDC simulation. As a result, we may obtain the high performance of the proposed control strategy.

  • PDF

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

DEEP-South: 2nd phase of observations for small Solar System bodies

  • Kim, Myung-Jin;Choi, Young-Jun;Yang, Hongu;Lee, Hee-Jae;Kim, Dong-Heun;JeongAhn, Youngmin;Roh, Dong-Goo;Moon, Hong-Kyu;Chang, Chan-Kao;Durech, Josef;Broz, Miroslav;Hanus, Josef;Masiero, Joseph;Mainzer, Amy;Bauer, James
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.46.1-46.1
    • /
    • 2020
  • DEEP-South (DEep Ecliptic Patrol of the Southern Sky) team will start the 2nd phase of KMTNet observation in Oct 2020. The DEEP-South observation mainly consists of three survey modes: (1) Activity survey (AS) that aims at finding active phenomena of small Solar System bodies. (2) Light curve survey (LS) targets to discover and characterize light variations of asteroids. And (3) Deep drilling survey (DS) focuses on the objects beyond the orbit of Jupiter (Centaurus and trans-Neptunian objects) as well as near Earth asteroids. For asteroid family (AF) studies and target of opportunity (TO) observations for urgent photometric follow-up, targeted mode will also be used. DEEP-South team is awarded 7.0% of the telescope time at each site every year from Oct 2020 to Sep 2023 in the 2nd phase of KMTNet operation which corresponds to about 75 full nights a year for the network. In this presentation, we will introduce our survey strategy and observation plan.

  • PDF

정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구 (A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites)

  • 지준범;조일성;이규태
    • 대한원격탐사학회지
    • /
    • 제29권1호
    • /
    • pp.123-135
    • /
    • 2013
  • 정지기상 위성의 가시채널에서 관측되는 반사도는 지상의 일사량 관측자료와 비교하여 구름량 계산이 가능하며 이를 이용하여 지표면에 도달되는 일사량을 추정할 수 있다. 기상 센서(MI)의 경우는 675 nm 파장으로 관측된 반사도를 이용하며 해양 센서(GOCI)는 기상 센서(MI)의 관측파장과 유사한 660 nm, 680 nm 파장으로 관측된 자료를 이용할 수 있다. 연구를 위하여 태풍이 있었던 흐린 날과 맑은 날을 선정하였으며 정지위성으로부터 관측된 자료들을 이용하였다. 위성영상의 반사도가 40%이상 높은 화소들은 0.3이하의 청천지수가 나타났으며 70%이상의 태양에너지가 차폐되었다. 또한 15%이하의 반사도가 나타나는 화소들은 0.9이상의 청천지수가 나타났으며 90%이상의 태양에너지가 지표면에 도달되었다. 계산된 일누적 일사량은 기상청 22개 관측소의 관측 일누적 일사량과 비교하였다. COMS와 MTSAT의 MI센서의 경우 관측값과 비교하여 다소 작게 계산되었으며 GOCI센서를 이용한 계산결과인 상관계수 0.96보다 낮은 0.94와 0.93의 상관성을 보였다. 그리고 일사량 관측값에 대한 RMSE는 MTSAT, COMS MI, GOCI순으로 2.21, 2.09, 2.02 MJ/$m^2$로 나타났다. 또한 COMS GOCI센서의 일누적 계산결과를 지상 관측자료와 비교하였을 때 흐린 날과 맑은 날의 상관성은 각각 0.96과 0.86이었으며 RMSE는 1.82 MJ/$m^2$와 2.27 MJ/$m^2$로서 흐린 날의 상관성이 높게 나타났다. COMS 위성의 해양 센서는 기상센서와 비교하여 관측시각이 한정적이고 관측의 불연속이 있으나 높은 해상도의 이점이 있기 때문에 태양에너지 분석 등의 연구에 유용할 것으로 사료된다.