DOI QR코드

DOI QR Code

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites

정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구

  • Jee, Joon-Bum (Weather Information Service Engine) ;
  • Zo, Il-Sung (Department of Atmospheric and Environmental Sciences, Gangnung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric and Environmental Sciences, Gangnung-Wonju National University)
  • 지준범 (차세대도시농림융합기상사업단) ;
  • 조일성 (강릉원주대학교 대기환경과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Received : 2012.10.31
  • Accepted : 2012.12.04
  • Published : 2013.02.28

Abstract

The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

정지기상 위성의 가시채널에서 관측되는 반사도는 지상의 일사량 관측자료와 비교하여 구름량 계산이 가능하며 이를 이용하여 지표면에 도달되는 일사량을 추정할 수 있다. 기상 센서(MI)의 경우는 675 nm 파장으로 관측된 반사도를 이용하며 해양 센서(GOCI)는 기상 센서(MI)의 관측파장과 유사한 660 nm, 680 nm 파장으로 관측된 자료를 이용할 수 있다. 연구를 위하여 태풍이 있었던 흐린 날과 맑은 날을 선정하였으며 정지위성으로부터 관측된 자료들을 이용하였다. 위성영상의 반사도가 40%이상 높은 화소들은 0.3이하의 청천지수가 나타났으며 70%이상의 태양에너지가 차폐되었다. 또한 15%이하의 반사도가 나타나는 화소들은 0.9이상의 청천지수가 나타났으며 90%이상의 태양에너지가 지표면에 도달되었다. 계산된 일누적 일사량은 기상청 22개 관측소의 관측 일누적 일사량과 비교하였다. COMS와 MTSAT의 MI센서의 경우 관측값과 비교하여 다소 작게 계산되었으며 GOCI센서를 이용한 계산결과인 상관계수 0.96보다 낮은 0.94와 0.93의 상관성을 보였다. 그리고 일사량 관측값에 대한 RMSE는 MTSAT, COMS MI, GOCI순으로 2.21, 2.09, 2.02 MJ/$m^2$로 나타났다. 또한 COMS GOCI센서의 일누적 계산결과를 지상 관측자료와 비교하였을 때 흐린 날과 맑은 날의 상관성은 각각 0.96과 0.86이었으며 RMSE는 1.82 MJ/$m^2$와 2.27 MJ/$m^2$로서 흐린 날의 상관성이 높게 나타났다. COMS 위성의 해양 센서는 기상센서와 비교하여 관측시각이 한정적이고 관측의 불연속이 있으나 높은 해상도의 이점이 있기 때문에 태양에너지 분석 등의 연구에 유용할 것으로 사료된다.

Keywords

Acknowledgement

Grant : 녹색성장 지원기술 개발 연구

Supported by : 국립기상연구소

References

  1. Bird, R.E. and C.J. Riordan, 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres, Journal of Climate and Applied Meteorology, 25: 87-97. https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
  2. Iqbal, M., 1983. An Introduction to Solar Radiation, Academic Press, New York, USA, p. 391.
  3. Jee, J.B., S.H. Jeon, Y.J. Choi, S.W. Lee, Y.S. Park, and K.T. Lee, 2012. The character of distribution of solar Radiation in Monggolia based on meteorological satellite data, Journal of the Korean Earth Science Society, 33(2): 139-147 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2012.33.2.139
  4. Jee, J.B., Y.D. Kim, W.H. Lee, and K.T. Lee, 2010. Temporal and spatial distribution of solar radiation with surface pyranometer data in South Korea, Journal of the Korean Earth Science Society, 31(7): 720-737 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2010.31.7.720
  5. Jee, J.B., W.H. Lee, I.S. Zo, and K.T. Lee, 2011. Correction of one-layer solar radiation model by multi-layer line-by-line solar radiation model, Atmosphere Korean Meteorological Society, 21(2): 151-162 (in Korean with English abstract).
  6. Jo, D.K. and Y.H. Kang, 2005. A study on the reliability evaluation and rehabitation of solar insolation data by field measurement in Korea, Journal of the Korean Solar Energy Society, 25(3): 11-18 (in Korean with English abstract).
  7. Jo, D.K. and Y.H. Kang, 2010. A detail survey of horizontal global radiation and cloud cover for the installation of solar photovoltaic system in Korea, Journal of the Korean Solar Energy Society, 30(3): 1-9 (in Korean with English abstract).
  8. Klein, S.A., P.I. Cooper, T.L. Freeman, D.M. Beekman, W.A. Beckman, and J.A. Duffie, 1975. A method of simulation of solar processes and its applications, Solar Energy, 17: 29-37. https://doi.org/10.1016/0038-092X(75)90014-6
  9. Korea Ocean Satellite Center, http://kosc.kordi.re.kr.
  10. Lee, K.T., I.S. Zo, J.B. Jee, and Y.J. Choi, 2011. Temporal and spatial distribution of the surface solar radiation by spatial resolution on Korea Peninsula, Journal of the Korean Society for New and Renewable Energy, 7(1): 22-28 (in Korean with English abstract). https://doi.org/10.7849/ksnre.2011.7.1.022
  11. NIMR (National Institute of Meteorological Research), 2008. A study of Development of Advanced Meteorological Technology, National Institute of Meteorological Research Applied Meteorology Research Division, 11-1360395-000276-10, p. 161.
  12. Partain, L.D., 1995. Sollar Cells and Their Applications, John Wiley and Sons, New York, p. 648.
  13. Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002. A new operational model for satellite-derived irradiances: description and validation, Solar Energy, 73: 307-317. https://doi.org/10.1016/S0038-092X(02)00122-6
  14. Rizk, J. and Y. Chaiko, 2008. Solar tracking system: more efficient use of solar panels, World Academy of Sciences, Engineering and Technology, 41: 313-315.
  15. Yeom, J.M., K.S. Han, C.S. Lee, and D.Y. Kim, 2008. An improved validation technique for the temporal discrepancy when estimated solar surface insolation compare with ground-based pyranometer: MTSAT-1R data use, Korean Journal of Remote Sensing, 24(6): 605-612 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.6.605
  16. Zo, I.S., J.B. Jee, W.H. Lee, K.T. Lee, and Y.J. Choi, 2010. Distribution of surface solar radiation by radiative model in South Korea, Climate Change Research, 1(2): 147-161 (in Korean with English abstract).

Cited by

  1. Evaluation of Global Horizontal Irradiance Derived from CLAVR-x Model and COMS Imagery Over the Korean Peninsula vol.12, pp.S2, 2016, https://doi.org/10.7849/ksnre.2016.10.12.S2.13
  2. Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.1
  3. The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region vol.37, pp.1, 2016, https://doi.org/10.5467/JKESS.2016.37.1.29
  4. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction vol.52, pp.4, 2016, https://doi.org/10.1007/s13143-016-0024-x
  5. Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula vol.174, pp.7, 2017, https://doi.org/10.1007/s00024-017-1578-y
  6. Baseline Surface Radiation Network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station vol.53, pp.1, 2017, https://doi.org/10.1007/s13143-016-0029-5
  7. 서울지역의 고해상도 수치표고모델기반 태양 에너지 산출 vol.27, pp.3, 2013, https://doi.org/10.14191/atmos.2017.27.3.331
  8. 3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석 vol.29, pp.5, 2013, https://doi.org/10.14191/atmos.2019.29.5.537
  9. Intercomparison of Satellite-Derived Solar Irradiance from the GEO-KOMSAT-2A and HIMAWARI-8/9 Satellites by the Evaluation with Ground Observations vol.12, pp.13, 2013, https://doi.org/10.3390/rs12132149
  10. Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019 vol.13, pp.17, 2013, https://doi.org/10.3390/rs13173422