• Title/Summary/Keyword: solar envelope

Search Result 85, Processing Time 0.025 seconds

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design (비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발)

  • Hong, Sung-Moon;Kim, Dae-Sung;Kim, Min-Cheol;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Evaluation of Seasonal Daylighting Performance according to Window Compositions of Double Skin Facades (이중외피 창호특성에 따른 계절별 실내 주광환경 평가)

  • Lim, Tae-Sub;Kang, Seung-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • Double skin façade is known that several features affected the building energy and daylighting performance. That is why the envelope is able to consist of all architectural materials such as glass, aluminum, wood and insulation for vision of residents and workers in buildings. Its specifications is very diverse according to the building designers and building owners. In recent times, visual environment became a major focus and resulted in the development of cutting edge engineering of diverse glazing systems and shading devices by growing interests of friendly environment. Thus this research has evaluated the fluctuations of interior lighting and atmospheric conditions based on double skin facade systems. Especially in terms of daylighting environment as dependent on solar variations, this research provides quantitative analysis of interior lighting conditions and how it affects the living conditions as well as improve the design of interior spaces.

A Study of Green Building Certification Criteria for Advanced Design in Curtainwall of Residential Buildings (주거시설의 커튼월입면를 고려한 친환경 건축물 인증제도 개선방향 연구)

  • Kim, Chul;Mo, Ji-Sun;Kim, Kong-Sook;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.155-160
    • /
    • 2008
  • Recently, curtainwall is built according to expand residential-commercial complex and high-raised buildings in residential buildings. It is that curtainwall has advantage to provide for the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building. These buildings also make a result increasing the amount used energy in domestic residence. Therefore, Aims of this study is to suggest advanced design through analysis of daylight, energy and envelope elements in GBCC and glazing simulation depended on case studies.

  • PDF

ENERGY ANALYSIS UTILIZING BIM FOR ZERO NET ENERGY TEST HOME

  • Cho, Yong K.
    • Journal of KIBIM
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents the results of a theoretical energy analysis of a research test bed called the Zero Net Energy Test House (ZNETH) in Omaha, Nebraska in U.S.A. The ZNETH project is being designed and built with the goal of consuming a negligible amount of energy by offsetting remaining usage after energy conservation. The theoretically consumed and generated energy levels were analyzed using energy modeling software programs. By integrating a highly graphical and intuitive analysis with a Building Information Model(BIM) of the house, this investigation introduces strategies to include sustainable materials and systems to predict energy generation with a case study of ZNETH. In addition, this paper introduces parametric analyses for better envelope design and construction material selection by analyzing simulated energy consumption with various parametric inputs, e.g., material types, location, and size. It was found that the current design of ZNETH does not meet its goal of zero net energy. Sugeestions are presented to assist ZHETH in meeting its net zero energy goal.

Thermal Performance of TI-wall System (투과형단열재 부착 건물외피구조체의 열성능)

  • Yoon, Yong-Jin;Kim, Hea-Jeong;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.121-128
    • /
    • 2004
  • One of the most weak parts for energy loss through the whole building components are building envelopes. Lots of technbologies to increase the thermal performance of building envelopes have been introduced in recent years. Transparent insulation is a new technology for building insulation and has function both solar transmittance and thermal insulation. This study has been carried out to develope the transparent insulation panels and TI-wall system and to analyze the thermal performance of TI-wall system by experiments using test-cell and dynamic energy simulation program ESP-r 9.0. This system is regarded as a efficient building envelope system suitable for to reduce the heating and cooling load of the buildings in our country.

Study on the palstic green houses depending on regional weather conditions (지역기후특성을 고려한 비닐온실에 관한연구)

  • Woo, Byung Kwan;Lee, Sung;Kim, Se Hwan;Kim, Sam Yeol
    • KIEAE Journal
    • /
    • v.9 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • Most Plastic Green Houses in Korea are made according the European weather condition, which lead to have very low solar energy efficiency. Moreover, the function of green houses, as well as the structure of them, has not changed for Korean weather condition. Therefore, the structure and function of them should adopt the regional weather condition in order to improve the energy efficiency. This paper investigates the current plastic green housesin Korea, and presents an alternative for improving the energy efficiency. The elements of green houses were investigated. When using a partial opaque insulation with a thermal storage body, the difference of indoor air temperature became 20C during daytime, and 5C during night, which will save massive fossil fuels.