• Title/Summary/Keyword: soil-structure-interaction

Search Result 611, Processing Time 0.023 seconds

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Seismic Response Analyses for Whole Power Block of Nuclear Facilities Considering Structure-Soil-Structure Interaction and Various Parameters (원자력발전소 파워블럭에 대한 구조물-지반-구조물 상호 작용과 다양한 매개변수를 고려한 지진응답해석)

  • Seo, Choon Gyo;Jang, Dong Hui;Jung, Du Ri;Chang, Soo Hyuk;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.333-343
    • /
    • 2018
  • In this paper, we study the existing results of the structure-soil-structure interaction (SSSI) effect on seismic responses of structures and summarize important parameters. The parameters considered in this study are a combination of buildings in the power block of a nuclear power plant, the characteristics of earthquake ground motions and its direction, and the characteristics embedded under the ground. Based on these parameters, the seismic analysis model of the structures in the power block of the nuclear power plant is developed and the structure-soil-structure interaction analyses are performed to analyze the influence of the parameters on the seismic response. For all analyses, the soil-structure interaction (SSI) analysis program CNU-KIESSI, which was developed to enable large-sized seismic analysis, is used. In addition, the SSI analyses is performed on individual structures and the results are compared with the SSSI analysis results. Finally, the influence of the parameters on the seismic response of the structure due to the SSSI effect is reviewed through comparison of the analysis results.

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Effect of nonlinear soil-structure interaction on the seismic performance of 3D isolated transformers when scaling the response spectra using the improved wavelet method

  • Mohammad Mahmoudi;Abbas Ghasemi;Shahriar Tavousi Tafreshi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.469-486
    • /
    • 2024
  • Electric transformers are major components of electrical systems, and damage to them caused by earthquakes can result in significant financial loss. The current study modeled a three-dimensional (3D) isolated electrical transformer under horizontal and vertical records from different earthquakes. Instead of using fixed coefficients, an improved wavelet method has been used to create the greatest compatibility between the response spectra and the target spectrum. This method has primarily been used for dynamic analysis of isolated structures with spring-damper devices because it has shown greater accuracy in predicting the response of such structures. The effect of the nonlinear soil-structure interaction on the probability of transformer failure also has been investigated. Soil and structure interaction modeling was carried out using a beam on a nonlinear Winkler foundation. The effect of the nonlinear soil-structure interaction during dynamic analysis of transformers revealed that the greatest increase in the probability of transformer failure was in the fixed-base condition when the structure was located on soft soil. This intensified the response of the structure and increased the probability of transformer failure by up to 27% for far-field and up to 95% for near-field ground motions. A comparison of the results indicates that the use of 3D isolation systems in transformers in areas with soft clay that are subject to near-field ground motions can strongly reduce the probability of failure and improve the seismic performance of the transformer.

Seismic Response Analysis for Three Dimensional Soil-structure Interaction System using Dynamic Infinite Elements (동적 무한요소를 이용한3차원 지반-구조물 상호작용계의 지진응답해석)

  • Seo, Choon-Gyo;Ryu, Jeong-Soo;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.55-63
    • /
    • 2008
  • This paper presents a seismic analysis technique for a 3D soil-structure interaction system in a frequency domain, based on the finite element formulation incorporating frequency-dependent infinite elements for the far field soil region. Earthquake input motions are regarded as traveling P, SV and SH waves which are incident vertically from the far-field soil region, and then equivalent earthquake forces are calculated using impedances of infinite soil by dynamic infinite elements and traction and displacement from free field response analysis. For verification and application, seismic response analyses are carried out for a multi-layered soil medium without structure and a typical nuclear power plant in consideration of soil-structure interaction. The results are compared with the free field response using a one-dimensional analytic solution, and a dynamic response of an example structure from another SSI package.

A Simplified Soil-Structure Interaction Analytical Technique of Embedded Structure and Structure on Layered Soil Sites (매입구조물(埋入構造物)과 층상지반상(層狀地盤上) 구조물(構造物)에 대한 지반(地盤)-구조물(構造物) 상호(相互) 작용(作用)의 단순해석(單純解析))

  • Joe, Yang Hee;Lee, Yong Il;Kim, Jong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.45-57
    • /
    • 1987
  • The dynamic behavior of a structure by earthquake is considerably affected by the flexibility of the base soil. This phenomenon is called dynamic soil-structure interaction effect. There are two broad categories of soil-structure interaction analytical technique: direct method and substructure method. Substructure method, in contrast to direct method, has many limitations in applying to embedded structures or structures on layered soil sites, while it is relatively simple. In this paper, a simplified soil-structure interaction analytical procedure using substructure method is proposed to eliminate its original limitations. The proposed method is well applicable to embedded structures or structures on layered soil sites with as good results as FLUSH.

  • PDF

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Characteristics of Earthquake Responses of an Isolated Containment Building in Nuclear Power Plants According to Natural Frequency of Soil (지반의 고유진동수에 따른 면진 원전 격납건물의 지진응답 특성)

  • Lee, Jin Ho;Kim, Jae Kwan;Hong, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2013
  • According to natural frequency of soil, characteristics of earthquake responses of an isolated containment building in nuclear power plants are examined. For this, earthquake response analysis of seismically isolated containment buildings in nuclear power plants is carried out by strictly considering soil-structure interactions. The structure and near-field soil are modeled by the finite element method while far-field soil by consistent transmitting boundary. The equation of motion of a soil-structure interaction system under incident seismic wave is derived. The derived equations of motion are solved to carry out earthquake analysis of a seismically isolated soil-structure system. Generally, the results of this analysis show that seismic isolation significantly reduces the responses of the soil-structure system. However, if the natural frequency of the soil is similar to that of the soil-structure system, the responses of the containment buildings in nuclear power plants rather increases due to interactions in the system.