• Title/Summary/Keyword: soil total carbon

Search Result 372, Processing Time 0.023 seconds

Studies on the Denitrification in the Submerged Paddy Soil -II. The Denitrification Rates Upon Kinds of Applied Organic Matter and Levels of Nitrogen Fertilizer (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)II보(報). 유기물(有機物)의 종류(種類) 및 질소시비량차이(窒素施肥量差異)가 탈질(脫窒)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Kim, Seung-Hwan;Park, Jun-Kyu;An, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.76-82
    • /
    • 1986
  • A laboratory experiment was conducted to find out the denitrification rate upon the levels of nitrogen and source of organic matter in submerged sandy and sandy loam soil. The results obtained were sumarized as follows; 1. Evolution of nitrous oxide was increased at 1st and 10 days after incubation. And dinitrogen was increased at 1st and 30 days after incubation. Applications of green manure was enhanced the evolution of nitrous oxide ($N_2O$) and dinitrogen ($N_2$). 2. The cumulative denitrification rates at 50 days was high in Gyuam sandy loam soil (O-M: 1.52%) than that of Hamchang sandy soil (O-M: 3.81%). On the other hand, the cumulative emission of dinitrogen was high in Gyuam sandy loam soil while nitrous oxide was high in Hamchang sandy soil. The total mount of denitrification rate was high in order of green manure > rice straw > compost > control soil. 3. Increases of fertilizer nitrogen was enhanced the rate of emission of dinitrogen and nitrous oxide during the incubation time. 4. According to Michaelis-Menten kinetic equation, denitrification rates and reaction efficiency were remarkably increased by application of readily decomposable organic matter with in higher organic matter content of soil. 5. The negative relationship was observed between the evolution of dinitrogen and carbon ($CO_2+CH_4$) while the nitrous oxide with carbon was positive. 6. Under the this experiment conditions 1 mg of carbon was required for production of 4 mg N as $N_2O$ and 3 mg of N as $N_2$, respectively.

  • PDF

Characterization of microbial communities and soil organic carbon degradation associated with the depth and thawing effects on tundra soil in Alaska (Alaska 툰드라 토양의 깊이 및 해동 영향에 따른 미생물 군집과 토양 유기 탄소 분해 특성)

  • Park, Ha Ju;Kim, Dockyu;Park, Hyun;Lee, Bang Yong;Lee, Yoo Kyung
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.365-374
    • /
    • 2016
  • In high-latitude regions, temperature has risen ($0.6^{\circ}C$ per decade) and this leads to the increase in microbial degradability against soil organic carbon (SOC). Furthermore, the decomposed SOC is converted into green-house gases ($CO_2$ and $CH_4$) and their release could further increase the rate of climate change. Thus, understanding the microbial diversity and their functions linked with SOC degradation in soil-thawing model is necessary. In this study, we divided tundra soil from Council, Alaska into two depth regions (30-40 cm and 50-60 cm of depth, designated as SPF and PF, respectively) and incubated that for 108 days at $0^{\circ}C$. A total of 111,804 reads were obtained through a pyrosequencing-based metagenomic study during the microcosm experiments, and 574-1,128 of bacterial operational taxonomic units (OTUs) and 30-57 of archaeal OTUs were observed. Taxonomic analysis showed that the distribution of bacterial taxa was significantly different between two samples. In detail, the relative abundance of phyla Actinobacteria and Firmicutes largely increased in SPF and PF soil, respectively, while phyla Crenarchaeota was increased in both soil samples. Weight measurement and gel permeation chromatography of the SOC extracts demonstrated that polymerization of humic acids, main component of SOC, occurred during the microcosm experiments. Taken together our results indicate that these bacterial and archaeal phyla could play a key function in SOC degradation and utilization in cold tundra soil.

Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil (PAHs 오염토양에서 분리된 Sphingobacterium sp. KM-02를 이용한 Fluorene 분해 및 토양복원 연구)

  • Nam, In-Hyun;Chon, Chul-Min;Kim, Jae-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.74-81
    • /
    • 2011
  • The fluorene-degrading strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near a mineimpacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in soil matrix was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil.

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF

Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea (광릉 활엽수천연림의 산림식생구조, 입지환경 및 탄소저장량)

  • Jong-Hwan Lim;Joon Hwan Shin;Guang Ze Jin;Jung Hwa Chun;Jeong Soo Oh
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest Bone. At the old-growth deciduous forest near Soribong-peak (533.1 m) in KEF, we have established a 1 ha permanent plot ($100m{\times}100m$) and a flux tower, and the site was registered as a KLTER(Korean long-term ecological research network) and DK site of KoFlux. In this site, we made a stemmap of trees and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2 cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area $28.0m^2$/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66 cm. Soil texture is loam or sandy loam, and its pH was f개m 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the 1.2 m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30 cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. These ground survey and monitoring data will give some important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function.

Assessment of Biomass and Carbon Stock in Sal (Shorea robusta Gaertn.) Forests under Two Management Regimes in Tripura, Northeast India

  • Banik, Biplab;Deb, Dipankar;Deb, Sourabh;Datta, B.K.
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2018
  • We investigated tree composition, stand characteristics, biomass allocation pattern and carbon storage variability in Sal forests (Shorea robusta Garten.) under two forest management regimes (Sal forest and Sal plantation) in Tripura, Northeast India. The results revealed higher species richness (29 species), stand density of $1060.00{\pm}11.12stems\;ha^{-1}$ and diversity index ($1.90{\pm}0.08$) in Sal forest. and lower species richness (4 species), stand density of $ 230.00{\pm}37.22stems\;ha^{-1}$ and diversity index ($0.38{\pm}0.15$) in Sal plantation. The total basal cover $33.02{\pm}4.87m^2ha^{-1}$) and dominance ($0.76{\pm}0.08$) were found higher in Sal plantation than the Sal forest ($22.53{\pm}0.38m^2ha^{-1}$ and $0.23{\pm}0.02$ respectively). The total vegetation carbon density was recorded higher in Sal plantation ($219.68{\pm}19.65Mg\;ha^{-1}$) than the Sal forest ($167.64{\pm}16.73Mg\;ha^{-1}$). The carbon density estimates acquired in this study suggest that Sal plantation in Tripura has the potentiality to store a large amount of atmospheric carbon inspite of a very low species diversity. However, Sal forests has also an impending sink of carbon due to presence of large number of young trees.

Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 유형에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1164-1168
    • /
    • 2011
  • This study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in soils (6 sites for immatured paddy, 9 sites for normal paddy, and 5 sites for sandy paddy) in Gyeongnam Province. The soil microbial biomass carbon content in normal and sandy paddy were 1,235 and $441mg\;kg^{-1}$, respectively, showing the soil microbial biomass carbon content in normal paddy was higher than that in sandy paddy. The soil organic matter contents $33g\;kg^{-1}$ of immatured and normal paddy were higher than sandy paddy $18g\;kg^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in normal paddy were significantly higher than those in sandy paddy (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation.

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Evaluation of Soil Redox Capacity using Chromium Oxidation-reduction Reactions in Volcanic Ash Soils in Jeju Island (크롬산화환원반응을 이용한 제주도 화산회토양 내 토양산화환원능 평가)

  • Chon, Chul-Min;Ahn, Joo-Sung;Kim, Kue-Young;Park, Ki-Hwa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-175
    • /
    • 2008
  • The soil developed from volcanic ash in Jeju Island, Korea, were classified as typical Andisols. The soils had acidic pH, high water contents, high organic matters and clay-silty textures. The crystalline minerals of the samples were mainly composed of ferromagnesian minerals such as olivine and pyroxene, and iron oxides such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found at the subsurface horizon as a secondary product from the migration of excessive aluminum. In addition, our study has shown that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in Jeju soils. The contents of $SiO_2$ were lower than those of other soil orders, but $A1_2O_3$ and $Fe_2O_3$ contents were higher. These results are some of the important chemical properties of Andisols. The contents of heavy metals were in the range of $84{\sim}198$ for Zn, $56{\sim}414$ for Ni, $38{\sim}150$ for Co, $132{\sim}1164\;mg\;kg^{-1}$ for Cr, which are higher than the worldwide values in most of the soils. Some soil samples contained relatively high levels of Cr exceeding 1000 mg/kg. Mean reduction capacity of the Jeju soils was $6.53\;mg\;L^{-1}$ reduced Cr(VI), 5.1 times higher than that of the non-volcanic ash soils from inland of Korea. The soil reduction capacity of the inland soils had a good correlation with total carbon content (R = 0.90). However, in spite of 20 times higher total carbon contents in the Jeju soils, there was a week negative correlation between the reduction capacity and the carbon content (R = -0.469), suggesting that the reduction capacity of Jeju soils is not mainly controlled by the carbon content and affected by other soil properties. Correlations of the reduction capacity with major elements showed that Al and Fe were closely connected with the reduction capacity in Jeju soil (R = 0.793; R = 0.626 respectively). Moreover, the amounts of Ni, Co and Cr had considerable correlations with the reduction capacity (R = 0.538; R = 0.647; R = 0.468 respectively). In particular, in relation to the behavior of redox-sensitive Cr, the oxidation of the trivalent chromium to mobile and toxic hexavalent chromium can be restricted by the high reduction capacity in Jeju soil. The factors controlling the reduction capacity in Jeju soils may have a close relation with the andic soil properties explained by the presence of considerable allophane and ferrihydrite in the soils.

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.