• 제목/요약/키워드: soil total carbon

검색결과 372건 처리시간 0.028초

Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry

  • Suresh, A.;Choi, Hong L.;Zhukun, Zhukun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.732-739
    • /
    • 2009
  • Pig slurry is a good soil amendment not only because of its high organic matter content, but also because of its ability to provide various nutrients. The objective of this study was to estimate the influence of raw and processed pig slurry application on pot soil over chemical fertilizer and non-amended control soil. Change in the chemical parameters (pH, organic matter (OM), organic carbon (OC), macro and micronutrients) and microbial mass of the treated soils were monitored over 30 to 90 days. Pot soil was treated with the recommended dose of pig slurry and chemical fertilizer, and was sampled after 30, 60 and 90 days of incubation. The least significanct difference (p<0.05) was observed on Fe, Cu, Zn, available P and K between treatments. All treatments increased N, P and K content and microbial mass of soil over control soil. Interestingly, no significant effects were detected on OM, OC, total bacteria, actinomycetes and fungi mass in soil irrespective of treatments given. However fungal and bacterial counts, as well as available nutrients, were found to be higher in processed slurry (PS)-treated soil compared to other soils. In general a significant correlation existed between the fungal count and OM, OC, Zn, T Kjeldahl N (TKN), available P and K of soil. A strong negative correlation was observed between pH and Fe in soil. This study clearly demonstrated that the use of processed manure as a fertilizer could be a key for sustainable livestock agriculture.

Effect of different biochar formulations on the growth of cherry tomatoes

  • Lee, Jae-Han;Luyima, Deogratius;Ahn, Ji-Young;Park, Seong-Yong;Choi, Bong-Su;Oh, Taek-Keun;Lee, Chang-Hoon
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.931-939
    • /
    • 2019
  • Biochar is a solid carbon material made by pyrolyzing a biomass under limited oxygen conditions. Biochar has been reported to confer various benefits, such as increased soil productivity, pollutant absorption, and reduced greenhouse gas. In this study, oak pyrolyzed at 600℃ for 3 hours was either powdered or pelleted. Each of the biochar types was added to the soil at a rate of 2%. The control did not receive any biochar while a combination of the biochar and NPK treatment (biochar 2% + NPK) was also included. The cherry tomatoes were grown in greenhouse pots for 50 days to compare the growth characteristics of the different treatments. The cherry tomato with the powdered biochar 2% + NPK treatment had the heaviest plant fresh shoot weight of 276.4 g and the highest chlorophyll content of 59.3 SPAD. The control had the lightest plant fresh shoot weight of 44.2 g and a chlorophyll content of 26.5 SPAD. Both forms of biochar affected the chemical properties of the soil, increased the pH, electrical conductivity, available phosphate, total carbon and total nitrogen and positively influenced the cherry tomato growth and productivity. From the above results, therefore, both biochar forms are suited for use as soil amendments.

경남지역 논토양 미생물 특성과 글로말린 함량 상관관계 (The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province)

  • 이영한;김민근;옥용식
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.792-797
    • /
    • 2012
  • 경남지역 논토양의 글로말린 함량과 미생물 특성과의 관계를 분석하기 위하여 2011년에 20개소를 선정하여 분석한 결과는 다음과 같다. 토양 글로말린 함량은 토양 유기물 함량 (r=0.595, p<0.01) 및 탈수소효소 활성 (r=0.663, p<0.01)과 정의상관 관계를 나타냈다. 또한, 글로말린 함량은 미생물 생체 탄소 함량 (r=0.710, p<0.001) 및 총 세균군집 (r=0.616, p<0.01)과 정의상관을 보였다. 그리고 글로말린 함량은 그람음성 세균의 군집 (r=0.561, p<0.05) 및 cy19:0/18:$1{\omega}7c$ (r=0.487, p<0.05)와 정의상관 관계를 나타냈다. 따라서 논토양에서 글로말린 함량은 지속가능한 친환경농업을 위해 토양 건강성의 지표로 활용할 수 있을 것으로 생각된다.

토양에서 유기화합물질의 침투 거동 연구 (Analysis on the Seepage Behavior of Organic Contaminants in Soil)

  • 이준호;한선향;박갑성
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.489-496
    • /
    • 2013
  • 지하수계의 근간을 이루는 토양시스템은 유기화학물질에 오염되기 쉬운 환경에 놓인다. 이러한 토양의 유기화학물질 침투 거동을 평가하기 위해 점토, 실트 및 모래로 구성된 실험장치에 유기화학 물질 이동실험을 하였다. Chloroform, 1,1,1-trichloroethane 및 trichloroethylene은 토양을 통해 이동이 쉽게 이루어지며, 투과된 오염물질의 질량은 전체 질량의 최소 4.6에서 최대 19.2% 범위를 보였다. Tetrachloroethylene Tetrachloroethylene, 1,2-dichlorobenzene 및 1,3-dichlorobenzene은 토양 흡착에 의해 이동이 지연되어졌으며, 각 매개체의 0.6 ~ 4.8%가 표층에서 여과되는데 이용되었다. Carbon tetrachloride는 거의 투과되지 못하였고, 단지 0.1 ~ 0.4% 질량만이 침투거동에 도달하였다. Bromoform은 거의 투과되지 못하였으며, 브롬화(Br) 화합물의 중간 전환물질로도 확인되었다. 유기화학오염물들의 이동은 토양입자크기 및 수리전도도 등에 따라 달라진다고 여겨지나 본 연구에서는 유기화학오염물들의 이동은 점토, 실트 토양보다 모래 토양에서 더욱 빠르게 나타났다.

토양컬럼을 이용한 합성하수 중의 질소제거 (Nitrogen Removal from Synthetic Domestic Wastewater Using the Soil Column)

  • 정경훈;임병갑;최형일;박상일;문옥란
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.707-714
    • /
    • 2007
  • A laboratory experiment was performed to investigate nitrogen removal by the soil column. The addition of 20% waste oyster shell to the soil accelerated nitrification in soil column. The $NO_3^--N$ concentration in the effluent decreased with the decrease of HRT(Hydraulic Retention Time). When methanol and glucose added as carbon sources, the average removal rates of T-N(Total Nitrogen) were 82% and 77.9%, respectively. The $NO_3^--N$ removal by methanol supplementation in soil column can likely be attributed to denitrification. In continuous removal of nitrogen using the soil column, the COD(Chemical Oxygen Demand) and $NH_4^+-N$ removed simultaneously in organic matter decomposing column. The greater part of $NH_4^+-N$ was nitrified by the percolated through nitrification column, and the little $NH_4^+-N$ was found in the effluent. The T-N of 87.4% removed at HRT of 36 hrs in denitrfication column. Because of nitrified effluents from nitrification column are low in carbonaceous matter, an external source of carbon is required.

혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해 (Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions)

  • 안익성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Relationships between Methane Production and Sulfate Reduction in Reclaimed Rice Field Soils

  • Lee, Ju-Hwan;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • 제8권4호
    • /
    • pp.281-288
    • /
    • 2004
  • The change in relationships between methane production and sulfate reduction was investigated in reclaimed rice field soils at different time points after reclamation of tidal flat in Korea. Sulfate concentrations of soils in the ca. 60-year-old and 26-year-old reclaimed rice fields were much lower than that in a natural tidal flat. During 60 d of anaerobic incubation, total methane production and sulfate consumption of the soil slurries were 7.0 ${\mu}$mol $CH_4$/g and 8.2 ${\mu}$mol $SO_4^{2-}$/g in the 60-year-old rice field, 5.6 ${\mu}$mol $CH_4$/g and 12.7 mmol $SO_4^{2-}$/g in the 26-year-old rice field, and ca. 0 mmol $CH_4$/g and 22.4 ${\mu}$mol $SO_4^{2-}$/g in a natural tidal flat. Relative percent electron flow through sulfate reduction in the 60-year-old rice field was much lower (50.8%) compared with the 26-year-old rice field (69.3%) and the tidal flat (99.9%). The addition of an inhibitor of methanogenesis (2-bromoethanesulfonate) had no effect on sulfate reduction in the soil slurries of the reclaimed rice fields. However, instant stimulation of methane production was achieved with addition of an inhibitor of sulfate reduction (molybdate) in the soil slurries from the 26-year-old reclaimed rice field. The specific inhibitor experiments suggest that the relationship of methanogenesis and sulfate reduction might become mutually exclusive or syntrophic depending on sulfate content in the soil after reclamation. Sulfate, thus sulfate reduction activity of sulfate-reducing bacteria, would be an important environmental factor that inhibits methane production and determines the major pathway of electron and carbon flow in anaerobic carbon mineralization of reclaimed rice field soils.

Nitrous Oxide Emission from Livestock Compost applied Arable Land in Gangwon-do

  • Seo, Young-Ho;Kim, Se-Won;Choi, Seung-Chul;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.25-29
    • /
    • 2012
  • Agriculture activities account for 58% of total anthropogenic emissions of nitrous oxide ($N_2O$) with global warming potential of 298 times as compared to carbon dioxide ($CO_2$) on molecule to molecule basis. Quantifying $N_2O$ from managed soil is essential to develop national inventories of greenhouse gas (GHG) emissions. The objective of the study was to compare $N_2O$ emission from livestock compost applied arable land with that for fertilizer treatment. The study was conducted for two years by cultivating Chinese cabbage (Brassica campestris L.) in Chuncheon, Gangwon-do. Accumulated $N_2O$ emission during cultivation of Chinese cabbage after applying livestock compost was slightly greater than that for chemical fertilizer. Slightly greater $N_2O$ emission factor for livestock compost was observed than that for chemical fertilizer possibly due to lump application of livestock compost before crop cultivation compared with split application of chemical fertilizers and enhanced denitrification activity through increased carbon availability by organic matter in livestock compost.

도시녹지의 이산화탄소 및 중금속 저감 (Mitigation of Carbon Dioxide and Heavy Metals by Urban Greenspace)

  • 박주영;주진희;윤용한
    • 환경정책연구
    • /
    • 제9권1호
    • /
    • pp.137-154
    • /
    • 2010
  • 본 연구는 청주시와 충주시를 대상으로 도시녹지(가로수 및 도시공원)에 의한 중금속 및 누적이산화탄소 고정량을 산출한 결과를 토대로 도시녹지의 환경개선효과를 평가하고자 하였으며, 얻은 결과는 다음과 같다. 1. 청주시와 충주시 가로수 전체에 대한 누적이산화탄소 고정량을 산출한 결과, 청주시의 총량은 약1,230,000kg-C로, 충주시는 약 1,270,000kg-C로 산출되었다. 청주시 발산공원과, 충주시 대가미체육공원에 누적이산화탄소 고정량을 산출한 결과, 청주시 발산공원의 총량은 약 25,000kg-C로, 충주시 대가미체육공원은 약 6,400kg-C로산출되었다. 2. 청주시 가로수에 가장 많이 축적된 중금속은 Zn이었으며, 가장 적게 축적된 중금속은 Ni이었다. 청주시 가로수를 대상으로 중금속을 측정한 결과 Zn > Cu > Cr > Ni > 순으로 나타났다.. 청주시 용도지역별 가로수의 중금속총함량은 주거지역(157.26 mg/kg) > 공업지역(141.71 mg/kg) > 상업지역(118.55 mg/kg) > 녹지지역(61.95 mg/kg)의 순으로 나타났다. 3. 대체적으로 충주시는 청주시보다 모든 항목에서 낮은 함량을 보였는데 이는 도시규모와 교통량의 차이에 따른 대기오염물질 발생량이 다르기 때문이다. 용도지역별 가로수의 중금속 총함량은 상업지역(84.48 mg/kg) > 주거지역(83.70 mg/kg) > 녹지지역(48.23 mg/kg)의 순으로 나타났다. 4. 청주시 용도지역별 가로수 식재지 토양의 중금속 함량은 Zn > Cu > Pb( > Ni > Cr > As > Cd)의 순으로 Zn이 가장 높게 나타났으며, Cd가 가장 낮게 축적된 것으로 분석되었다. 용도지역별 가로수 식재지 토양의 총 중금속 총 함량은 상업지역(91.82mg/kg) > 공업지역(85.96mg/kg) > 주거지역(67.55mg/kg) > 녹지지역(43.13mg/kg)의 순으로 나타났다. 5. 충주시 용도지역별 가로수 식재지 토양의 중금속 함량은 Zn > Pb > Cu( > Ni > Cr > As > Cd)의 순으로 Zn이 가장 높게 나타나 청주시와 유사한 경향을 보였다. 용도지역별 가로수 식재지 토양의 중금속 총함량은 상업지역(87.66mg/kg) > 녹지지역(72.73mg/kg) $${\geq_-}$$ 주거지역(70.10mg/kg)의 순으로 나타났다.

  • PDF

Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Central Highlands of Ethiopia

  • Tesfaye, Mehari Alebachew;Gardi, Oliver;Anbessa, Tesfaye Bekele;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • 제44권1호
    • /
    • pp.8-25
    • /
    • 2020
  • Background: Species of the genera Eucalyptus, Cupressus, and Pinus are the most widely planted tree species in the country in general and in Chilimo dry Afromontane forest in particular. Eucalyptus covers 90% of the total planted forest area in the country. However, only limited information exists in the country regarding aboveground biomass (AGB), belowground biomass (BGB), growth, and yield. This study was conducted to assess the variables on 25 and 30 years of age for three planted species: Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Chilimo plantation forest, in the Central Highlands of Ethiopia. A two-times inventory was conducted in 2012 and 2017. A total of nine square sampled plots of 400 ㎡ each, three plots under Cupressus lusitanica, 3 Eucalyptus saligna, and 3 Pinus patula were used for data collection. Data on height, diameter, soil, and tree stumps were collected. Percent C, % N, and bulk density was performed following chemical procedure. Results: The aboveground biomass ranged from 125.76 to 228.67 t C ha-1 and the basal area and number of stems from 3.76 to 25.50 ㎡ ha-1 and 483 to 1175 N ha-1, respectively. The mean annual basal area and volume increment were between 0.97 and 1.20 ㎡ ha-1 year-1 and 10.79 and 16.22 ㎥ ha-1 year-1. Both carbon and nitrogen stock of the planted forest was non-significant among the tree species. Conclusion: The aboveground biomass, growth, and yield significantly varied among the species. Cupressus lusitanica had the highest aboveground biomass, volume, and basal area, while Eucalyptus saligna had the lowest value. To a depth of 1 m, total carbon stored ranged from 130.13 to 234.26 t C ha-1. The total annual carbon sequestration potential was 12,575.18 t CO2 eq. Eucalyptus has the highest carbon stock density and growth rate than other species.