Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80417

Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry  

Suresh, A. (Department of Agricultural Biotechnology, Seoul National University)
Choi, Hong L. (Department of Agricultural Biotechnology, Seoul National University)
Zhukun, Zhukun (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.5, 2009 , pp. 732-739 More about this Journal
Abstract
Pig slurry is a good soil amendment not only because of its high organic matter content, but also because of its ability to provide various nutrients. The objective of this study was to estimate the influence of raw and processed pig slurry application on pot soil over chemical fertilizer and non-amended control soil. Change in the chemical parameters (pH, organic matter (OM), organic carbon (OC), macro and micronutrients) and microbial mass of the treated soils were monitored over 30 to 90 days. Pot soil was treated with the recommended dose of pig slurry and chemical fertilizer, and was sampled after 30, 60 and 90 days of incubation. The least significanct difference (p<0.05) was observed on Fe, Cu, Zn, available P and K between treatments. All treatments increased N, P and K content and microbial mass of soil over control soil. Interestingly, no significant effects were detected on OM, OC, total bacteria, actinomycetes and fungi mass in soil irrespective of treatments given. However fungal and bacterial counts, as well as available nutrients, were found to be higher in processed slurry (PS)-treated soil compared to other soils. In general a significant correlation existed between the fungal count and OM, OC, Zn, T Kjeldahl N (TKN), available P and K of soil. A strong negative correlation was observed between pH and Fe in soil. This study clearly demonstrated that the use of processed manure as a fertilizer could be a key for sustainable livestock agriculture.
Keywords
Pig Slurry; Chemical Fertilizer; Nutrients; Bacteria; Actinomycetes; Fungi;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Ranhe, K. 1987. Effects of organic manuring and cropping on soil humus and fertility. In: Agricultural waste management and environmental protection 1 (Ed. E. Welte and I. Szabolcs). Proceedings from 4th International Symposium of CIEC, Brannchweig, Germany. pp. 55-76
2 Rutete, B., M. D. Perez-Murcia, A. Perez-Espinosa, R. Moral, J. Morero-Caselles and C. Paredes. 2006. Total and fecal coliforms bacteria persistence in a pig slurry amended soil. Livestock Sci. 102:211-215   DOI   ScienceOn
3 Araujo, A. S. F. and R. T. R. Monteiro. 2006. Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge. Chemosphere 64:1043-1046   DOI   ScienceOn
4 Bandick, A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem. 31:1471-1479   DOI   ScienceOn
5 Dong, K. L. 2000. Utilization of organic wastes for reducing the chemical fertilizers. Working Report, National Institute of Agricultural Science and Technology (NIAST), Korea
6 Flieûbach, A., R. Martens and H. H. Reber. 1994. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 26:1201-1205   DOI   ScienceOn
7 Grignani, C., L. Zavattaro, D. Sacco and S. Monaco. 2007. Production, nitrogen and carbon balance of maize-based forage systems. Eur. J. Agro. 26:442-453   DOI   ScienceOn
8 Moreno, J. L., T. Hernandez and C. Garcia. 1999. Effects of cadmium contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol. Fert. Soils 28:230-237   DOI   ScienceOn
9 Pauwels, J. M., E. Van Ranst, M. G. Verloo and Z. A. Mvondo. 1992. Manuel de laboratoire de p$\acute{a}$dologie. A. G. Building, Place du Champ de mars 5, Boîte 57, Bruxelles 1050. Publications Agricoles 28. pp. 191-208
10 Allison, L. E. 1965. Organic carbon. In: Methods of soil analysis part 2 -Chemical and microbiological properties (Ed. C. A. Black, D. Evans, J. L. White, L. E. Ensiminger, F. E. Clark, and R. C. Dinauer). Soil Science Society of America, Madison, WI. pp. 367-378
11 Dı´ez, J. A., A. I. De la Torre, M. C. Cartagena, M. Carballo, A. Vallejo and M. J. Mun${\sim}$oz. 2001. Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches. J. Environ. Qual. 30:2165-2172   DOI   PUBMED   ScienceOn
12 Tyler, G. 1981. Heavy metals in soil biology and biochemistry. In: Soil biochemistry, Vol. 5 (Ed. E. A. Paul and J. N. Ladd). Marcel Dekker, New York. pp. 371-414
13 Wellington, E. M. H. and I. K. Toth. 1994. Actinomycetes. In: Methods of soil analysis. Part 2. Microbiological and biochemical properties (Ed. R. W. Weaver). SSSA Book Ser. 5. SSSA, Madison, WI. pp. 269-290
14 Berggren, D. and J. Mulder. 1995. The role of organic matter in controlling aluminium solubility in acidic mineral soil horizons. Geochem. Acta. 59:4167-4180   DOI   ScienceOn
15 Selivanovskaya, S. Y., V. Z. Latypova, S. N. Kiyamova and F. K. Alimova. 2001. Use of microbial parameters to assess treatments methods of municipal sewage sludge applied to grey forest soils of Tatarstan. Agric. Ecosyst. Environ. 86:145-153   DOI   ScienceOn
16 Diaz-Ravin${\sim}$a, M., M. J. Acea and T. Carballas. 1993. Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol. Biochem. 25:25-31   DOI   ScienceOn
17 Zuberer, D. A. 1994. Recovery and enumeration of viable bacteria. In: Methods of soil analysis. Part 2. Microbiological and biochemical properties (Ed. R. W. Weaver). SSSA Book Ser. 5. SSSA, Madison, WI. pp. 119-144
18 Saviozzi, A., P. Bufalino, R. Levi-Minzi and R. Riffald. 2002. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. Biol. Fert. Soils 35:96-101   DOI   ScienceOn
19 Kaku, K., A. Ikeguchi, A. Ogino, T. Osada, M. Hojito and K. Shimada. 2004. Achieving a nitrogen balance for Japanese domestic livestock waste: testing the scenario of planting feed grain in land left fallow. Asian-Aust. J. Anim. Sci. 17:1026-1032
20 Ong, H. K., P. C. Pullammanappallil and P. F. Greenfield. 2000. Physical, chemical and biomethanation characteristics of stratified cattle-manure slurry. Asian-Aust. J. Anim. Sci. 13:1593-1597
21 Sasaki, H., J. Nonaka, K. Otawa, O. Kitazume, R. Asano, T. Sasaki and Y. Nakai. 2009. Analysis of the structure of the bacterial community in the livestock manure-based composting process. Asian-Aust. J. Anim. Sci. 22:113-118
22 Gregorich, E. G., B. H. Ellert, C. H. Drury and B. C. Liang. 1996. Fertilization effects on soil organic matter turnover and corn residue carbon storage. Soil Sci. Soc. Am. J. 60:472-476   DOI   ScienceOn
23 Islam, M. A., K. N. Monira, M. J. Alam and M. A. Wahid. 2003. Effect of litter materials on broiler performance and evaluation of manureal value of used litter in late autumn. Asian-Aust. J. Anim. Sci. 16:555-557
24 Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2. 2nd Ed. (Ed. A. L. Page). Agron. Monogr. 9. ASA and SSSA. Madison, WI. pp. 539-579
25 Rahman, S. M. E., M. A. Islam, M. M. Rahman and D. H. Oh. 2008. Effect of cattle slurry on growth, biomass yield and chemical composition of maize fodder. Asian-Aust. J. Anim. Sci. 21:1592-1598
26 Cornelissen, J. H. C., R. Aerts, B. Cerabolini, M. J. A. Werger and M. G. A. Van der Heijden. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611-619
27 Rodriguez, F., C. Guerrero, R. Moral, H. Ayguade and J. Mataix- Beneyto. 2005. Effects of composted and non-composted solid phase of pig slurry on N, P, and K contents in two mediterranean soils. Communications in Soil Sci. Plant Anal. 36:635-647   DOI   ScienceOn
28 Dick, R. P. 1992. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 40:25-36   DOI   ScienceOn
29 Hall, J. E. 1999. Nutrient recycling: the European experience (A review). Asian-Aust. J. Anim. Sci. 12:667-674
30 Miller, F. C. 1991. Composting as a process based on the control of ecologically selective factors. In: Soil microbial ecology, applications in agriculture and management (Ed. F. Z. Metting, Jr.). Dekker, New York. pp. 515-544
31 Sharpley, A. N. 2000. Phosphorus availability. In: Hadbook of soil science (Ed. M. E. Sumner). CRC Press, Boca Raton, FL
32 Van Gestel, M., R. Merckx and K. Valssak. 1993. Microbial biomass responses to soil drying and rewetting the fate of fast and slow growing microorganisms in soils from different climates. Soil Biol. Biochem. 25:109-123   DOI   ScienceOn
33 Sharpley, A. N. and S. J. Smith. 1995. Nitrogen and phosphorus forms in soils receiving manure. Soil Sci. 159:253-258   DOI   ScienceOn
34 SPSS. 2004. Sigma plot for windows. Version 13.0. Chicago. Ill. SPSS, Inc., USA
35 Amberger, A. 1990. Use of organic wastes as fertilizers and its environmental implications. In: Fertilization and the environment (Ed. R. Merckx, H. Vereecken and K. Vlassak). Kluwer Academic Publishers, Londona. pp. 314-329
36 Bremmer, J. M. 1996. Nitrogen-total. In: Methods of soil analysis, part 3 (Ed. J. M. Bigham). Chemical Methods, SSSA Book series 5, ASA, Madison, WI. pp. 1085-1121
37 Olsen, S. R. and L. E. Sommer. 1982. Phosphorus. In: Methods of soil analysis. Agronomy vol. 9, Part II. (Ed. A. L. Page, R. H. Miller and D. R. Keeney). Am. Soc. Agron, S.S.S. Am. Madison. WI. pp. 403-430