Proceedings of the Korean Society for Agricultural Machinery Conference
/
2000.11b
/
pp.246-253
/
2000
The optimal equations to predict the soil tempratures of twelve cities in the region of the southern part of the Korea such as Changhung, Cheju, Chinju, Kwangju, Masan, Miryang, Mokpo, Muan, Pusan, Sogwipo, Ulsan, Yoosu, were suggested as function of time and soil depth and the time dependent variation and soil depth dependent distribution of temperature were analyzed for the back data of the geothermal energy utilization system design and agricultural usages. The equation form is $T(x,\;t)\;=\;T_{m}\;-\;T_{so}{\cdot}Exp(-\xi){\cdot}cos{\omega}(t\;-\;t_{o}\;-\;x\;/\sqrt{2{\alpha}{\omega}}$) and it can predict the soil temperatures well with the correlation factor of 0.98 or upwards for most data. The range of mean soil temperature was $14.99~18.53^{\circ}C$ and soil surface temperature swing, 11.65~14.54 days, soil thermal diffusivity, $0.025~0.069\;m^2/day$ except Mokpo of $0.100\;m^2/day$, and phase shift, 19.66~27.81 days. During about thirty years from 1960s to 1990s, the mean soil temperature was increased by $0.04~1.25^{\circ}C$. The temperature difference depending on soil depth was not significant.
The equation to predict the soil temprature of Pusan and Chinju city as a function of time and soil depth for the geothermal energy utilization system and agriculture was devised. The equation was $T(x,t)\;=\;Tm\;-\;To{\cdot}ExP(-{\xi}){\cdot}cos{{\omega}{\cdot}[t-to-x/(2{\cdot}{\alpha}{\cdot}{\omega})^{0.5}]}$ with the soil thermal diffusivity, ${\alpha},\;of\;0.4\;\textrm{m}^2/day,\;0.0375\;\textrm{m}^2/day$ and phase zero point, to, of 24 days, 22.4 days in Pusan and Chinju city, respectively, during ten years from 1987 to 1996. The predicted and measured soil temperatures agreed well with the coefficient of determination of 0.95 at the soil depth of 0.0, 0.5, 1.0, 3.0, 5.0 m. The maximum and minimum temperature in Pusan 3.7, $30.1^{\circ}C$ at soil surface and 14.3, $18.0^{\circ}C$ at the depth of 5.0 m. The total mean temperature of soil in Pusan and Chinju city was about 16.3, $16.0^{\circ}C$, respectively.
Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.
Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.
In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.
Journal of the Korean Data and Information Science Society
/
v.20
no.4
/
pp.649-654
/
2009
Soil temperature is an important tool in predicting a change of climate and agricultural environment together with the change of atmospheric temperature. In this paper, we examine changing patterns of soil temperature measured in 0.5m under ground from 1932 to 1990 and atmospheric temperature from 1961 to 2008, and derive a relationship between atmospheric temperature and soil temperature. Using this model, we predict unmeasured soil temperature in Daegu area and soil temperature is found to be increasing about $0.028^{\circ}C$per a year. Prediction of soil temperature is an important indicator for climate change in Daegu and will be useful information to help us take precautions for global warming, etc.
Kim, Yong-Hwan;Hyun, Myung-Taek;Kang, Eun-Chul;Park, Yong-Jung;Lee, Euy-Joon
Journal of the Korean Solar Energy Society
/
v.26
no.4
/
pp.1-7
/
2006
This study is to develop a model to predict the soil temperature variation in Korea Institute of Energy Research using its thermal properties, such as thermal conductivity and diffusivity. Soil depth temperature variation is very important in the design of a proper Ground Source Heat Pump (GSHP) system. This is because the size of the borehole depends on the soil temperature distribution, and this can decrease GSHP system cost. If the thermal diffusivity and thermal conductivity are known, the soil temperature can be predicted by either the Krarti equation or the Spitler equation. Then a comparison with the Krarti equation and Spitler equation data with the real measured data can be performed. Also, the thermal properties can be reasonably approximated by performing a fit of the Krarti and Spitler equations with measured temperature data. This was done and, as a result, the Krarti equation and Spitler equation predicted values very close to the measured data. Although there is about a $0.5^{\circ}C$ difference between the deep subsurface prediction (16m - 60m), with this equation, were expected to have model this Non-Homogeneous Soil Temperature phenomenon properly. So, it has been shown that a prediction of non-homogeneous soil temperature variation influenced by solar radiation can be achieved with a model.
Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
Atmosphere
/
v.26
no.1
/
pp.35-45
/
2016
Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.
For the analysis of geothermal energy utilization in agriculture the relations between soil temperature and geographical variables such as latitude longitude and sea level in Korea were analyzed and the regression equations were suggested among them. The measured soil temperature data for four years in eighteen cities were used to get the soil temperature fitting equation depending on the soil depth and the time of year in each city. The mean correlation coefficient for those data fitting was 0.980. the correlation coefficient of regression analysis for the mean soil temperature($T_{m}$) on the geographical variables such as latitude longitude and height above sea level was 0.958 and those for soil surface temperature amplitude(Tss) and phase constant(tp) were 0.889, 0.835, respectively. The relation between the apparent thermal diffusivity of the soil and the three geographical variables was not significant. The regression equations for the mean soil temperature($T_{m}$) soil surface temperature amplitude(Tss) and phase constant(tp) adopting latitude($X_{1}$) longitude($X_2$) height above sea level($X_3$) were as follows : $T_{m}$=50.049 - $0.849X_1$-$0.03131X_2$-$0.00622X_3$Tss=-6.970 +$0.584X_1$+$0.00530X_2$-$0.00214X_3$tp=70.353 - $1.404X_1$+ $0.02098X_2$+ $0.00312X_3$
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.