• Title/Summary/Keyword: soil temperature and moisture

Search Result 514, Processing Time 0.039 seconds

Experimental Study on Temperature-Moisture Combined Measurement System for Slope Failure Monitoring (사면붕괴 모니터링에 사용되는 온도-함수비 복합계측시스템 개발에 관한 실험적 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • Recently, the event of slope failure has been occurring frequently due to rapid climate changes and broad development of infrastructures, and the research for establishment of monitoring and prevention system has been an attentive issue. The major influence factors of slope failure mechanism can be considered moisture and temperature in soil, and the slope failure can be monitored and predicted through the trend of moisture-temperature change. Therefore, the combined sensing technology for the continuous measurement of moisture-temperature with different soil depths is needed for the slope monitoring system. The various independent sensors for each item (i.e. temperature and moisture respectively) have been developed, however, the research for development of combined sensing system has been hardly carried out. In this study, the high-fidelity sensor combing temperature-moisture measurement by using the minimized current consuming temperature circuit and the microwave emission moisture sensor is developed and applied on the slope failure monitoring system. The feasibility of developed monitoring system is verified by various experimental approaches such as standard performance test, mockup test and long-term field test. As a result, the developed temperature-moisture combined measurement system is verified to be measuring and monitoring the temperature and moisture in soil accurately.

Growth Environments of Cypripedium macranthum Sw. Habitats in Korea (복주머니란 (Cypripedium macranthum Sw.)자생지의 생육환경에 관하여)

  • Kim, Jee-Yeon;Lee, Jong-Suk
    • Horticultural Science & Technology
    • /
    • v.16 no.1
    • /
    • pp.30-32
    • /
    • 1998
  • Growth environments of Cypripedium macranthum Sw. habitats distributed in mountains and highland plains of northern part of Kyunggi-do and Kangwon-do in Korea, were studied in order to obtain basic data. Mean temperature in habitats of Cypripedium macranthum was $14^{\circ}C$ and minimum value was recorded $-7^{\circ}C$ in January, and maximum value was $28^{\circ}C$ in August. Mean soil temperature of the orchid sites was $11^{\circ}C$ and minimum value was $-4^{\circ}C$ in January. The light intensity from March to May was 48,000~51,400 lux and the lowest value was 11,500 lux in July. Light intensity in shade habitat sites from July to August was dropped to 470~865 lux, and the SPAD value was 34.3 in July, which was the highest of the year. The range of soil acidity was pH 5.6~5.8 and soil moisture was 16.4%~36.2%. The highest soil moisture was 36.2% on June. The Cypripedium habitats were correlated with temperature (especially high temperature), light intensit, and soil moisture. However, critical factor seems to be soil moisture in distribution of Cypripedium macranthum in Korea.

  • PDF

Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks (인공신경망을 이용한 용담댐 유역 공간 토양수분 분포도 산정)

  • Park, Jung-A;Kim, Gwang-Seob
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.319-330
    • /
    • 2011
  • In this study, a soil moisture estimation model was proposed using the ground observation data of soil moisture, precipitation, surface temperature, MODIS NDVI and artificial neural networks. The model was calibrated and verified on the Yongdam dam watershed which has reliable ground soil moisture networks. The test statistics of calibration sites, Jucheon, Bugui, Sangjeon, showed that the correlation coefficients between observations and estimations are about 0.9353 and RMSE is about 1.4957%. Also that of the verification site, Cheoncheon2, showed that the correlation coefficient is about 0.8215 and RMSE is about 4.2077%. The soil moisture estimation model was applied to estimate the spatial distribution of soil moisture in the Yongdam dam watershed and results showed improved spatial soil moisture distribution since the model used satellite information of NDVI and artificial neural networks which can represent the nonlinear relationships between data well. The model should be useful to estimate wide range soil moisture information.

Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings (인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화)

  • Han, Seung Hyun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • This study was conducted to investigate the effects of warming and precipitation manipulation on seasonal changes in fine root production (FRP) and fine root mortality (FRM) of 33-month-old Pinus densiflora seedlings for two years. The seedlings in warmed plots were warmed with $3.0^{\circ}C$ higher using infrared heaters. The air temperature of warmed (TW) plots was set to increase by $3^{\circ}C$ compared to temperature control (TC) plots, and the three precipitation manipulation consisted of precipitation decrease (-30%; PD), precipitation increase (+30%; PI) and precipitation control (0%; PC). FRP ($mm\;mm^{-2}\;day^{-1}$) was significantly altered by only precipitation manipulation (PC: 3.57, PD: 4.59, PI: 3.02), while warming had no significant effect on the FRP and FRM. Meanwhile, interactions between warming and precipitation manipulation and seasonal changes had no significant effects on FRP and FRM. However, the influences of seasonal changes in soil temperature and soil moisture on FRP and FRM were different according to warming. In TW plots, FRP showed a positive relationship with soil temperature, and FRM showed a negative relationship with soil moisture. On the other hand, in the TC plots, FRP showed a positive relationship with soil moisture, and there were no relationships between FRM and soil temperature and moisture. These results indicate that the climate factors that affect FRP and FRM might vary as the warming progresses.

Effect of Soil Moisture and Temperature on the Survival of the Root-Knot Nematode (Meloidogyne incognita, Meloidogyne., arenaria and Meloidogyne hapla.) (토양수분 및 온도가 뿌리혹선충 (Meloidogyne incognita, M. arenaria, M. hapla) 의 생존에 미치는 영향)

  • 박수준
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1979
  • Egg masses of the root- knot nematodes ( Meloidogyne incognita, M. arenaria and M. haply) were exposed to two different regimes of soil moisture (459 and 2459) and temperature ( -2$^{\circ}C$ and 33$^{\circ}C$), quite extreme condition in their natural environment, and their survival rate was compared. Three species did not show any difference in the rate when exposed to either soil moisture for 25 days, with the rate in the range of 8.6% to 10.4%. In response to temperature treatment, however, they differed : the best survival rate was obtained from M. incognita at high temperature ( 33"C) and from M, hapla at low temperature (-2$^{\circ}C$) plot. The third species (M. arenaria) was intermediate in both temperature regimes.imes.

  • PDF

Designing a Remote Electronic Irrigation and Soil Fertility Managing System Using Mobile and Soil Moisture Measuring Sensor

  • Asim Seedahmed Ali, Osman;Eman Galaleldin Ahmed, Kalil
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.71-78
    • /
    • 2022
  • Electronic measuring devices have an important role in agricultural projects and in various fields. Electronic measuring devices play a vital role in controlling and saving soil information. They are designed to measure the temperature, acidity and moisture of the soil. In this paper, a new methodology to manage irrigation and soil fertility using an electronic system is proposed. This is designed to operate the electronic irrigation and adds inorganic fertilizers automatically. This paper also explains the concept of remote management and control of agricultural projects using electronic soil measurement devices. The proposed methodology is aimed at managing the electronic irrigation process, reading the moisture percentage, elements of soil and controlling the addition of inorganic fertilizers. The system also helps in sending alert messages to the user when an error occurs in measuring the percentage of soil moisture specified for crop and a warning message when change happens to the fertility of soil as many workers find difficulty in daily checking of soil and operating agricultural machines such as irrigation machine and soil fertilizing machine, especially in large projects.

Effect of Soil Moisture Content on Photosynthesis and Root Yield of Panax ginseng C. A. Meyer Seedling (토양수분함량이 묘삼의 광합성 및 근 수량에 미치는 영향)

  • Lee, Sung-Woo;Hyun, Dong-Yun;Park, Chun-Geun;Kim, Tae-Soo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.367-370
    • /
    • 2007
  • To make the soil moisture proper is the important factor in the seedbed cultivation of Yangjik for producing a good quality of ginseng seedling. This study was carries out to investigate the effect of soil moisture on photosynthesis and yield of ginseng seedling under the different condition of the soil moisture, such as $100{\sim}400$ mbar. Photosynthesis rate was decreased gradually by the reduction of soil moisture, and in particular it was decreased distinctly under the lower condition of soil moisture, such as $300{\sim}400$ mbar. Photosynthesis rate in air temperature of $30^{\circ}C$ was decreased more distinct than that of $25^{\circ}C$, Light saturation point of leaves was at the quantum of $600{\mu}mol/m^3/s$ at $25^{\circ}C$ while it was decreased by $300{\mu}mol/m^3/s$ at $30^{\circ}C$ according to the increase of air temperature. Respiration rate was increased by the increase of quantum, and decreased by the reduction of soil moisture. Respiration rate under the condition of high quantum was increased regardless of air temperature, but it was decreased distinctly under the condition of low soil moisture and high air temperature, such as 400 mbar at $30^{\circ}C$. There were a gradual decrease by the reduction of soil moisture in leaf length, leaf width, chlorophyll content, and water content of leaves, but heat injury ratio was increased distinctly by the reduction of it. Total root weight, root weight per plant, the yield of usable seedling were decreased by the reduction of soil moisture, and optimal content of soil moisture to produce a good quality of seedling was 63% of field capacity or 18.9% in absolute soil moisture content.

Effects of Global Warming and Environmental Factors of Light, Soil Moisture, and Nutrient Level on Ecological Niche of Quercus acutissima and Quercus variabilis (지구온난화와 환경요소인 광, 토양수분, 영양소가 상수리나무와 굴참나무의 생태 지위에 미치는 영향)

  • Cho, Kyu-Tae;Jang, Rae-Ha;Lee, Seung-Hyuk;Han, Young-Sub;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to determine the changes of the ecological niche breadth and niche overlap of Quercus acutissima and Quercus variabilis under elevated $CO_2$ concentrations and under elevated temperature conditions. We investigated the growth responses by environmental factor, $CO_2$ concentration, air temperature, light, soil moisture and nutrients. Rising $CO_2$ concentration was treated with 1.6 times than control (ambient) and increased temperature with $2.2^{\circ}C$ above the control (ambient) in the glass greenhouse. Ecological niche breadth and niche overlap was calculated the two oak species (Q. acutissima and Q. variabilis), which were cultivated with light, soil moisture and nutrient gradients at four levels. As a result, the ecological niche breadth of Quercus acutissima was determined to be increased under the warming treatment, but decreased under soil moisture and nutrient environments. The ecological niche breadth of Quercus variabilis was increased under light, soil moisture and nutrients of the warming treatment than control. Ecological niche overlap between Quercus acutissima-Quercus variabilis was increased under light of the warming treatment than control, but decreased under soil moisture and nutrient environments. These results means that two oak species are more severe competition in light environments than soil moisture and nutrient environments. According to analyses of the Cluster and PCA, the two oak species were more sensitive react under light environment than to elevated $CO_2$ concentration or elevated temperature.

CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay (순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Pil-Geun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.217-227
    • /
    • 2010
  • This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Soil Respiration Characteristics in Pinus densiflora Forests in Republic of Korea: A Case of Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan (2009~2010) (우리나라 소나무림의 토양호흡 특성: 점봉산, 남산, 지리산 사례 연구 (2009~2010))

  • Jae-Ho Lee;Young-Ju Yu;Sang-Hun Lee;Man-Seok Shin;Jae-Seok Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.