• Title/Summary/Keyword: soil runoff

Search Result 811, Processing Time 0.025 seconds

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Erodibility evaluation of sandy soils for sheet erosion on steep slopes (급경사면의 면상침식에 대한 사질토양의 침식성 평가)

  • Shin, Seung Sook;Park, Sang Deog;Hwang, Yoonhee
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • Artificial disturbance in mountainous areas increases the sensitivity to erosion by exposure of the subsoil with a low loam ratio to the surface. In this study, rainfall simulations were conducted to evaluate the erodibility of sand and loamy sand in the interrill erosion by the rainfall-induced sheet flow. The mean diameters of sand and loamy sand used in the experiment were 0.936 mm and 0.611 mm, respectively, and the organic matter content was 2.0% and 4.2%, respectively. In the experimental plot, the runoff coefficient of overland flow increased 1.16 times in loamy sand rather than sand. Mean sediment yields of loamy sand and sand by sheet erosion were 3.71kg/m2/hr and 1.13kg/m2/hr respectively. The erodibility, the rate of soil erosion for rainfall erosivity factor, was 3.65 times greater in loamy sand than in sand. As the gradient of the steep slope increased from 24° to 28°, the sediment concentration and the erodibility for two soils increased by about 20%. The erodibility factor K of sandy soils for small plots was overestimated compared to the measured erodibility. This means that RUSLE can overestimate the sediment yields by sheet erosion on sandy soils.

Assessment of the Contribution of Weather, Vegetation, Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (I) - Preparation of Input Data for the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지유역과 하천유역에 미치는 기여도 평가(I) - 모형의 입력자료 구축 -)

  • Park, Geun-Ae;Lee, Yong-Jun;Shin, Hyung-Jin;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.107-120
    • /
    • 2010
  • The effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water was assessed using the SLURP (semi-distributed land use-based runoff process), a physically based hydrological model. The fundamental input data (elevation, meteorological data, land use, soil, vegetation) was collected to calibrate and validate of the SLURP model for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang and Gosam) located in Anseongcheon watershed. Then, the CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year, m ms, m5ms and 2amms was downscaled by Change Factor method through bias-correction using 3m years (1977-2006) weather data of 3 meteorological stations of the watershed. In addition, the future land uses were predicted by modified CA (cellular automata)-Markov technique using the time series land use data fromFactosat images. Also the future vegetation cover information was predicted and considered by the linear regression between monthly NDVI (normalized difference vegetation index) from NOAA AVHRR images and monthly mean temperature using eight years (1998-2006) data.

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

Micromorphological Changes of Rill Development under Simulated Rainfall and Inflow on Steep Slopes (모의 강우와 유입수에 의해 급경사면에서 발달한 세류의 미세지형 변화)

  • Shin, Seung Sook;Sim, Young Ju;Son, Sang Jin;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Interrill erosion dominates in forest areas, and the erosion rate in surface-disturbed areas is significantly increased by the development and expansion of rill. In this study, soil erosion experiments using simulated rainfall and inflow were performed to understand the development and the micromorphological changes of rill on steep slopes. The characteristic factors of the micromorphology, such as the rill cross section, rill volume, rill density, rill order, and rill sharpness, were analyzed according to steepness and location (upper or lower) of slope. The head-cut of the simultaneous incised rills by rainfall simulation moved rapidly upslope, and the randomly developed rills expanded deeply and widely with their connection. The rill cross section evolved to downslope gradually increased. The rill volume occupied about 78 % of the sediment volume, confirming that the contribution of the sediment from the rill erosion is greater than that of the interrill erosion. Although the rate of increase in rill order slowed as the slope increased, the total length and density of the rill generally increased. As the slope increased from 15° to 20°, the bed incision of rills became larger than the sidewall expansion, and the rill sharpness increased by 1.6 times. The runoff coefficient on the lower slope decreased by 12.3 % than that on the upper slope. It was evaluated that the subsoil exposures and formation changes by the rill expansion increased the infiltration rate. Although the sediment accompanying the rills generally increased with slope increase, it was directly influenced by the hydraulic velocity of enhanced rill with the local convergence and expansion in the process of the rill evolution.

Discharge Characteristics of Indicator Microorganisms from Agricultural-Forestry Watersheds (농지-임야에서 발생하는 지표미생물 유출 특성)

  • Kim, Geonha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.153-160
    • /
    • 2008
  • To estimate microbial contaminant loading discharged from diffuse sources, rainfall runoff of six rainfall events were monitored at three study watersheds of forestry and agricultural land use. Monitored indicator microorganism constituents were total coliform (TC), fecal coliform (FC), Escherichia coli (EC), and fecal streptococcus (FS). Soil loss during elevated flow rate caused higher suspended solid concentrations. Indicator microorganism concentrations were closely related with flow rate. TC event mean concentration (EMC) from unpolluted forestry was $5.3{\times}10^3CFU/100ml$, FC EMC was $1.4{\times}10^3CFU/100ml$, EC EMC was $1.1{\times}10^3CFU/100ml$, and FS EMC was $2.9{\times}10^2CFU/100ml$. From a watershed with agricultural-forestry land use, TC EMC was $1.7{\times}10^5CFU/100ml$, FC EMC was $8.5{\times}10^4CFU/100ml$, EC EMC was $8.9{\times}10^4CFU/100ml$, and FS EMC was $3.4{\times}10^4CFU/100ml$. Mixed land use of agricultural-forestry with bigger area, TC EMC was $1.9{\times}10^5CFU/100ml$, FC EMC was $9.6{\times}10^4CFU/100ml$, EC EMC was $7.0{\times}10^4CFU/100ml$, and FS EMC was $5.1{\times}10^4CFU/100ml$.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Effects of Natural Wetland in Reducing Nutrient Loadings from Rice Culture - Free-Range Ducks (RCFD) Paddy fields in Korea (오리농업재배 소유역내 자연습지가 오리농업시 유출되는 영양염류 부하량 저감에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Youl;Choi, Young-Dae;Yun, Eul-Soo;Woo, Koan-Sik;Seo, Myung-Chul;Nam, Min-hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • The amount of nutrients from the effluents of rice culture - free-range ducks (RCFD) paddy fields and the effects of natural wetlands located at downstream of RCFD on water quality and aquatic plants was evaluated. This was carried out in a 61.9 ha paddy fields in Ulsan, Gyeongnam, where downstream is a 5.9 ha natural wetland, 61% of which was covered with well-developed aquatic plants. The amounts of T-N and T-P in the effluent from paddy field with RCFD were 13.7 and $2.5kg\;ha^{-1}$, respectively, which is 1.2~2.5 times higher than those observed in conventional rice culture practice. The amount of runoff from the RCFD area, calculated using the revised TANK model, was $543mm\;ha^{-1}$ with 808 kg of T-N and 130 kg of T-P during rice cultivation period. The dominant aquatic plants in the wetland includes Phragmites communis, Zizania latifolia, Persicaria thunbergii. etc. The nutrient contents of the aquatic plants which amounted to 761 kg of T-N and 103 kg of T-P were almost equivalent to 94% and 79% of the T-N and T-P in RCFD and CRC effluent. Therefore, the use and maintenance of wetlands in RCFDs area could be a good solution to management the non-point pollution from duck feces in RCFD paddy fields.

Proposal for Estimation Method of the Suspended Solid Concentration in EIA (환경영향평가에서 부유사 농도 추정 방법 제안)

  • Choo, Tai Ho;Kim, Young Hwan;Park, Bong Soo;Kwon, Jae Wook;Cho, Hyun Min
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • SS(Suspended Solid) concentration by soil erosion into river at normal and flood season should be measured. However, to present the variation of SS due to various development project such as EIA(Environmental Impact Assessment), River Master Plan, and so on, it is necessary to estimate not measure SS, but there are not exist how to estimate SS. In the present study, therefore, we propose the hydrologic method of estimating SS concentration using the results of particular frequency flood discharge and sediment discharge by RUSLE method. SS consists of silty and clay soil and colloid particle etc. However, in the present study, silty and clay soils of sediment discharge except send set up SS standards. The flow discharge to estimate SS concentration are 1~2 years for normal season, 30~100 years for flood season. Meanwhile, analysis software for probable rainfall uses Fard2006, probable rainfalls under 2-year frequency are estimated using rainfall data and frequency factor of Gumbel distribution. The results of estimating SS concentration using runoff volume by sediment and flow discharges of silty and cray soils as above method show that reliable level of SS concentration is considered in predevelopment of natural condition and under development of barren condition. Especially, SS concentration takes notice that the value of sediment discharge makes a huge difference according to channel slope, it was confirmed that the value obtained by dividing the SS concentration by the channel slope is relatively constant even though the topographical factors are different. Therefore, if the present study will be proceeded for various watersheds, it will be developed as estimation method of SS concentration.