Browse > Article
http://dx.doi.org/10.3741/JKWRA.2009.42.1.33

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed  

Ahn, So-Ra (Dept. of Civil and Environmental System Engineering, Konkuk University)
Park, Min-Ji (Dept. of Civil and Environmental System Engineering, Konkuk University)
Park, Geun-Ae (Dept. of Civil and Environmental System Engineering, Konkuk University)
Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
Publication Information
Journal of Korea Water Resources Association / v.42, no.1, 2009 , pp. 33-50 More about this Journal
Abstract
The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.
Keywords
SLURP; Land Use Change; Climate Change; GCMs; Downscaling; Hydrologic components;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 안재현, 유철상, 윤용남 (2001). “GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석.” 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345   과학기술학회마을
2 이용준, 김성준 (2007). 미래 토지이용변화 예측을 위한 개선된 CA-Markov 기법의 제안 및 적용, 대한토목학회논문집, 대한토목학회, 제27권, 제6D호, pp. 809-817
3 Snell, S.E., Gopal, S., and Kaufmann. R.K. (2000). "Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs." Journal of Climate. Vol. 13, No. 5, pp. 886-895   DOI   ScienceOn
4 배덕효, 정일원 (2005). “기후변화에 따른 수자원 영향 평가.“ 방재정보, 한국방재협회, 제21호, pp. 16-22
5 Doogers, P., and Aerts, J. (2005). "Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins." Physics and Chemistry of he earth. Vol. 30, pp. 339-346   DOI   ScienceOn
6 기상연구소 (2004). 기후변화엽학 대응 지역기후시나리오 활용기술개발(III), 기상연구소
7 IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
8 Mann, H.B., (1945). Nonparametric tests against trend. Econometrica. Vol. 13, pp. 245-259   DOI   ScienceOn
9 Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models; Part 1 - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290   DOI   ScienceOn
10 김성준 (2002) “수자원 분포의 시공간적 변동.” 한국농림기상학회지, 한국농림기상학회, 제4권, 제3권, pp. 175-196   과학기술학회마을
11 안소라, 이용준, 박근애, 김성준 (2008). “미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석.” 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224
12 유철상, 이동률 (2000). “기후변화와 수자원: 국내의 연구동향.” 한국수자원학회논문집, 한국수자원학회, 제33권 3호, pp. 42-47   과학기술학회마을
13 Garbrecht, J. and Martz, L.W. (1997). TOPAZ Version 1.20: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization - Overview. Rep.# GRL 97-2, Grazinglands Research Laboratory, USDA, Agricultural Research Service, El Reno, Oklahoma, pp. 21
14 Ahn, S.R., Ha, R., Lee, Y.J., Park, G.A., and Kim, S.J. (2008). “Evaluation of future climate change impact on Gyeongancheon Watershed using SLURP hydrological model.” Korean Journal of Remote Sensing. Vol. 24, No. 1, pp. 45-55   과학기술학회마을   DOI
15 Andersson, L., Wilk, J., Todd, M.C., Hughes, D.A., Earle, A., Kniveton, D., Layberry, R., and Savenije. H.G. (2006). "Impact of climate change and development scenarios on flow patterns in the Okavango River." Journal of Hydrology. Vol. 331, pp. 43-57   DOI   ScienceOn
16 Carter, T.R., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment
17 IPCC. (2001). Climate Change 2001: The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
18 IPCC.-TGCLA (1999). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment, Version 1. Prepared by Carter, T. R., M. Hulme, and M. Lal, Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, pp. 69
19 Kite, G.W. (1975). "Performance of two deterministic hydrological models." IASH-AISH Publication, Vol. 115, pp. 136-142
20 Kendall, M.G. (1975). Rank Correlation Methods. Griffin, London
21 Kite, G.W. (1998) "Land surface parameterizations of GCMs and macroscale hydrological models." Journal American Water Resources Association, Vol. 34, No. 6, pp. 1247-1254   DOI   ScienceOn
22 Kite, G.W. (1993). "Application of a land class hydrological model to climatic change." Water Resources Research, Vol. 29, No. 7, pp. 2377-2384   DOI   ScienceOn
23 Kite, G.W., Ellehoj, E., and Dalton, A. (1996). GIS for large-scale watershed modelling, in Geographical Information Systems in Hydrology. Singh, V.P.; Fiorentino, M (eds). Kluwer Academic Publishers, Netherlands
24 김병식, 김형수, 서병하, 김남원 (2004). “기후변화가 용담댐 유역의 유출에 미치는 영향.” 한국수자원학회논문집, 한국수자원학회지, 제37권, 제2호, pp. 185-193   과학기술학회마을   DOI
25 Viner, D., and Mayer, L. (1994). Climate Change Scenarios of Impact Studies in the UK, Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia
26 Wilby, R.L., and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames." Water Resources Research. Vol. 42, pp. 1-10   DOI   ScienceOn
27 Zhang, X., Srinivasan, R., and Hao, F. (2007). "Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model." ASAE. Vol. 50, No. 3, pp. 901-910
28 Duan, Q., Sorooshian, S.S., and Gupta, V.K. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, pp. 265-284   DOI   ScienceOn
29 Zhou, L., Dickinson, R. E., Tian, Y., Zeng, X., Dai, Y., Yang, Z. L., Schaaf. C. B., Gao, F., Jin, Y., Strahler, A., Myneni, R.B., Yu, H., and Shaikh. M. (2003). "Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model." Journal of Geophysical Research. Vol. 108, No. 15, pp. 1-20   DOI
30 Diaz-nieto, J., and Wilby, R.L. (2005). "A comparision of statistical downscaling and climate change factor methods impacts on low flows in the River Thames." Climatic Change. Vol. 69, pp. 245-268   DOI
31 Sefton, C.E.M., and Boorman, D.B. (1997). “A Resinal Investigation of Climate Change Impacts on UK Streamflows.” Journal of Hydrology, Vol. 195, pp. 26-44   DOI   ScienceOn
32 Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen. D. (2006). "Hydrologic response to scenario of climate change in sub watersheds of the Okanagan basin, British Columbia." Journal of Hydrology. Vol. 326, pp. 79-108   DOI   ScienceOn
33 Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the vernal advancement of natural vegetation. NASA Goddard Space Flight Center, Greenbelt, MD, Final Rep.