• Title/Summary/Keyword: soil pH

Search Result 4,020, Processing Time 0.041 seconds

Studies on Diplosis mori Yokopama (mulberry shoot Gall midge) on mulberry tree (뽕나무 순집이 혹파리에 관한 연구)

  • 전대략;이영렬;조철호
    • Journal of Sericultural and Entomological Science
    • /
    • v.2
    • /
    • pp.49-61
    • /
    • 1962
  • The insect Diplosis mori Yokoyama is causing extensive destruction of mulberry trees in Korea with a resultant loss in silk production. This study was made to determine an effective method of control. Methods and Materials Used Preliminary studies were made to determine more exactly the life cycle of the insect. Based on this information, various control measures were tested, including the use of spray methods with BHC and control of larvae by tilling. Results Obtained 1. Life cycle studies (a) In the Suwon area, this-insect has 5 generations per year. The first starts in the later part of June and the final cycle ends in the later part of September. (b) The adult insects appear about 7: 00-8: 00 P.M. and live for 2-5 days. Females live in longer periods than the male. (c) Larvae lives inside the second and third stipules (A. B.) before mulberry leaf development. They cause extensive damage to the leaves at the point where they are attached to the stem. (d) Weather conditions considerably affect the life cycle. The pupa particularly are affected and not be able to change into the moth stage when there is a long period of no rain. (e) Larvae are large......0.3 to 2.0mm......and are milky-white immediately after hatching but turn to pinkish as the worm matures. The matured worm has a jumping ability up to 15-20cm. The worm burrows into the ground 1.5 to 3.0 cm before changing into the pupal stage. (f) The pupal stage usually lasts 7-8 days, in summer weather conditions and the pupa is surrounded with a coarse cocoon. (g) These insects, as a general rule, overwinter as pupae but sometimes as larvae. 2. Control measures (a) BHC dust applied on the ground seem most effective. It should be done 4-5 days after the worm has burrowed into the ground. For this control, it is recommended that 6kg of a 2% formation Tanbo(l0ares) be used. (b) For the effective spraying against the fly, it is recommended that a formulation of liquid BHC spray terials be used at the rate of 400-600 liters per Tanbo. (c) Tillage methods which provide a cover of soil 5cm or more in depth above infested areas will effect-maively prevent the emergence of the fly from the pupal stage. 3. Conclusions Methods of control against Diplosis mori Yokoyama can be tied more closely to the life cycle of the insect with more effective results. Further studies are needed to complete information on possible controls during or after hibernation. Economic studies on the cost of these control measures are also needed.

  • PDF

Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems

  • Miao, Z.H.;Glatz, P.C.;Ru, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1615-1634
    • /
    • 2004
  • A review was undertaken to obtain information on the sustainability of pig free-range production systems including the management, performance and health of pigs in the system. Modern outdoor rearing systems requires simple portable and flexible housing with low cost fencing. Local pig breeds and outdoor-adapted breeds for certain environment are generally more suitable for free-range systems. Free-range farms should be located in a low rainfall area and paddocks should be relatively flat, with light topsoil overlying free-draining subsoil with the absence of sharp stones that can cause foot damage. Huts or shelters are crucial for protecting pigs from direct sun burn and heat stress, especially when shade from trees and other facilities is not available. Pigs commonly graze on strip pastures and are rotated between paddocks. The zones of thermal comfort for the sow and piglet differ markedly; between 12-22$^{\circ}C$ for the sow and 30-37$^{\circ}C$ for piglets. Offering wallows for free-range pigs meets their behavioural requirements, and also overcomes the effects of high ambient temperatures on feed intake. Pigs can increase their evaporative heat loss via an increase in the proportion of wet skin by using a wallow, or through water drips and spray. Mud from wallows can also coat the skin of pigs, preventing sunburn. Under grazing conditions, it is difficult to control the fibre intake of pigs although a high energy, low fibre diet can be used. In some countries outdoor sows are fitted with nose rings to prevent them from uprooting the grass. This reduces nutrient leaching of the land due to less rooting. In general, free-range pigs have a higher mortality compared to intensively housed pigs. Many factors can contribute to the death of the piglet including crushing, disease, heat stress and poor nutrition. With successful management, free-range pigs can have similar production to door pigs, although the growth rate of the litters is affected by season. Piglets grow quicker indoors during the cold season compared to outdoor systems. Pigs reared outdoors show calmer behaviour. Aggressive interactions during feeding are lower compared to indoor pigs while outdoor sows are more active than indoor sows. Outdoor pigs have a higher parasite burden, which increases the nutrient requirement for maintenance and reduces their feed utilization efficiency. Parasite infections in free-range pigs also risks the image of free-range pork as a clean and safe product. Diseases can be controlled to a certain degree by grazing management. Frequent rotation is required although most farmers are keeping their pigs for a longer period before rotating. The concept of using pasture species to minimise nematode infections in grazing pigs looks promising. Plants that can be grown locally and used as part of the normal feeding regime are most likely to be acceptable to farmers, particularly organic farmers. However, one of the key concerns from the public for free-range pig production system is the impact on the environment. In the past, the pigs were held in the same paddock at a high stocking rate, which resulted in damage to the vegetation, nutrient loading in the soil, nitrate leaching and gas emission. To avoid this, outdoor pigs should be integrated in the cropping pasture system, the stock should be mobile and stocking rate related to the amount of feed given to the animals.

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

Comparison of Hydrochemical Characteristics of Groundwater in the Southern Area and the Northwestern Area, Pusan (부산 남부지역 지하수와 서북부지역 지하수의 수리화학적 특성 비교)

  • 함세영;조명희;성익환;이병대;조병욱;심형수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.140-151
    • /
    • 1999
  • Groundwater samples from the southern area composed of andesitic rocks and the northwestern area composed of granite in Pusan city, have been collected and analyzed. According to the Piper diagram. groundwater in the southern area belongs to Ca$\^$2+/-HCO$_3$$\^$-/ and Ca$\^$2+/-(Cl$\^$-/+SO$_4$$\^$2-/) types, and that in the northwestern area mostly belongs to Ca$\^$2+/-HCO$_3$$\^$-/ type and partly Na$\^$+/-HCO$_3$$\^$-/ type. Two factors (factor 1 and factor 2) were obtained from the result of the factor analysis in the southern area. Factor 1, consisting of Mg$\^$2+/, Ca$\^$2+/, Cl$\^$-/, SO$_4$$\^$2-/, NH$_4$$\^$+/, EC and NO$_3$$\^$-/ is represented by the dissolution of Ca-plagioclase and calcite, and the influence of anthropogenic sources. Factor 2, consisting of K$\^$+/, Na$\^$+/. SiO$_2$, SO$_4$$\^$2-/, and HCO$_3$$\^$-/ is mainly represented by the dissolution of feldspar. Three factors were obtained from the result of the factor analysis in the northwestern area Factor 1, consisting of Na$\^$+/, K$\^$+/, NH$_4$$\^$+/, Cl$\^$-/, SO$_4$$\^$2-/ and NO$_3$$\^$-/ explains dissolution of plagioclase and mica, the influence of anthropogenic sources and salt water. Factor 2, consisting of Ca$\^$2+/ and HCO$_3$$\^$-/ explains the dissolution of Ca-plagioclase. Factor 3, consisting of Mg$\^$2+/ and SiO$_2$, explains the dissolution of silicate minces. and contaminants. Based on the phase stability diagrams, groundwater both in the southern and in the northwestern area is mostly in equilibrium with kaolinite. Cl$\^$-/ with respect to Na$\^$+/, Ca$\^$2+/, Mg$\^$2+/, K$\^$+/, SO$_4$$\^$2-/ and HCO$_3$$\^$-/ indicates that both the northwestern area and the southern area are influenced by the salt water.

  • PDF

Economic Analysis, Growth and Pests of Wheat (Triticum aestivum L.) in Gelatin·Chitin Microorganisms-treated Organic Culture (젤라틴·키틴분해미생물을 이용한 밀 유기재배와 관행재배의 생육, 병해충 발생조사 및 경제성 분석)

  • Ahn, Philip;Lee, Jiho;Cha, Kwang-Hong;Seo, Dong-Jun;An, Kyu-Nam;Yoon, Chang-Yong;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.223-240
    • /
    • 2021
  • This study was carried out to investigate the economic value of organic wheat production using gelatin·chitin microorganisms in Gwangsan-gu, Gwangju city. The soil condition of experiment field was clay loam Jisan series. The organically cultivated fields were sprayed gelatin and chitin degrading bacteria. The test was performed at conventionally cultivated field and organically cultivated field. Emergence of weed on organically cultivated field was significantly higher than conventionally cultivated field which sprayed herbicide before seeding. Weed emergence have a critical impact on grain yield. Occurrence of diseases and insect pests were higher than conventionally cultivated fields. In 2019, the amount of lodging in conventionally cultivated field were higher than conventionally cultivated field. In 2020, lodging and wet injury were occur in both field. Comparing yield element between organically and conventionally cultivated experimental area, grain yield in organically cultivated field was shown slightly higher amount than conventionally cultivated field. However in the actual yield of 2019, organically cultivated field shows 20% deceased yield because of overgrown weed. In 2020, weed emergence and yellow mosaic virus by wet injury cause 30% decease in the grain yield in organically cultivated field. Content of protein, carbohydrates, ash, water and fat in the grain were not different significance. In 2019, net incomes of conventionally cultivated wheat was 461,031 won/0.1 ha while organically cultivated wheat was 443,437 won/0.1 ha. In the rate of income, conventionally cultivated field was 83.0% as against organically cultivated field (73.3%). In 2020, net incomes of organically cultivated wheat was 437,812 won/0.1 ha while conventionally cultivated wheat was 418,281 won/0.1 ha. In the rate of income, conventionally cultivated field was 81.6% as against organically cultivated field (73.0%).

Basic Studies of Korean Native Clerodendron trichotomum Thunberg for Landscape Uses (전통식물 누리장나무의 조경용 소재개발을 위한 기초연구)

  • Han, In-Song;Ha, Yoo-Mi;Kim, Dong-Yeob;Lee, Bong-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • This study was carried out to investigate growth characteristics and propagation methods of Clerodendron trichotomum for landscape uses. The results are obtained as follows: In the first place, Korean native C. trichotomum was printed in the "Enumeration of plants in Chosun" in 1937 by Tae Hyun Chung. C. trichotomum is a shrub with round shape. This is noted for its late summer flowers, showy fruit and malodorous foliage. White flowers in long-peduncled cymes bloom in the upper leaf axils from late summer into fall. Flowers are followed by small bright blue fruits, each subtended by a fleshy red calyx. C. trichotomum showed high seed germination rate and greater shoot length in plug box than in normal seeding bed. The rooting rate of C. trichotomum according to cutting date was highest on July 7. The optimum date for cutting was on July 7~10 when the shoots were more hardened. Soil acidity ranged from pH 4.58 to 5.52. The most effective method for rooting of C. trichotomum was treatment with 1,000 ppm IBA on July 7 cuttings, which showed rooting rate of over 90%. Korean native C. trichotomum was successfully propagated through soft cutting and seed.

Effect of Different Liquid Manure Anaerobic Digestates on the Growth and Yield of Rice and the Optimum Application Concentration (혐기소화발효액비의 벼 생육 및 수량에 미치는 영향과 적정 시용량)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.97-104
    • /
    • 2021
  • This research examined the effects of different liquid manure based anaerobic digestate on the growth and yield of rice compared to chemical fertilizer. The liquid manure was produced by aerobic fermentation from swine with cow or apple pomace anaerobic digestate and treated at different concentrations. The number of grains per panicle increased in both the liquid manure-treated and chemical fertilizer treated rice. The yield index did not vary significantly between the liquid manure and chemical fertilizer. An increased concentration of liquid manure did not correlate with increases in unhulled rice. However, pH and exchangeable K in the soil increased with an increase in liquid manure. In summary, we suggest a properly applied 100% liquid manure fertilizer can replace chemical fertilizer to reduce our excessive use of inorganic fertilizer.

Studies on the Amylase Production by Bacteria (세균(細菌)에 의(依)한 Amylase생산(生産)에 관한 연구(硏究))

  • Park, Yoon-Joong
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 1970
  • 1. Isolation and identification of amylase-producing bacteria. The powerful strain A-12 and S-8 were respectively isolated from air and soil after screening a large number of amylase-producing bacteria. Their bacterial characteristics have been investigated and it has been found that all characteristics of strain A-12 and S-8 are similar to Bac. subtilis of Bergey's manual except for the acid formation from a few carbohydrates and the citrate utilization, i.e., the strain A-12 shows negative in the citrate utilization, and the acid formation from arabinose and xylose, S-8 shows negative in the acid formation from xylose. 2. Amylase production by Liquid cultures with solid materials. Several conditions for amylase production by strain A-12 in stationary cultures have been studied. The results obtained are as follows. (1) The optimum conditions are:temperature $35^{\circ}C$, initial pH 6.5 to 7.0 and incubation time 3 to 4 days. (2) The amylase production is not affected by the preservation period of the stock cultures. (3) Among the various solid material, the defatted soy bean is found to be the best for t1e amylase production. However, the alkali treatment of the defatted soy bean gives no effect contrary to the cage of defatted rape seed. The addition of soluble starch to the alkali extract of defatted soy bean shows the increased amylase production. (4) Up to 1% addition of ethanol to carbon dificient media gives the improved amylase production, whereas the above effect is not found in the case of carbon rich media. (5) The amylase production can be increased 2.5 times when 10% of defatted soy bean is admixed to cheaply available wheat bran. (6) The excellent effect is found for amylase production when 20% of wheat bran is admixed to defatted dry milk which is a poor medium. The activity is found to be $D^{40^{\circ}}_{30'}$ 7,000(L.S.V. 1,800) in 10% medium. (7) No significant effect is observed due to the addition of various inorganic salts. 3. Amylase production by solid cultures. Several conditions for amylase production by strain A-12 in wheat bran cultures have been studied and the results obtained are as follows. (1) The optimum conditions: are temperature $33^{\circ}C$, incubation lime 2 days, water content added 150 to 175% and the thickness of the medium 1.5cm, The activity is found to be $D^{40^{\circ}}_{30'}$ 36,000(L.S.V. 15,000) (2) No significant effect is found in the case of the additions of various organic and inorganic substances.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF