• Title/Summary/Keyword: soil pH

Search Result 4,042, Processing Time 0.031 seconds

Effects of soil solution pH on adsorption and desorption of Cd, Cu and Zn by soils (토양중(土壤中)에서 Cd, Cu 및 Zn의 흡착(吸着) 및 용탈(溶脫)에 미치는 토양용액(土壤溶液) pH의 영향(影響))

  • Lim, Soo-Kil;Lee, Young-Jun;Choi, Ho-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.119-127
    • /
    • 1991
  • In order to reveal the mechanism of heavy metal behavior in soils relating to factors such as soil pH, organic matter, C.E.C. and soil minerals influencing the activities of heavy metals, Cd, Cu and Zn were applied to soil columns filled with 8 different soils with adjusted soil pH to several levels between 3.0 to 11.0 and the amounts of adsorption and desorption of these heavy metals were measured. 1. At the adsorption maxima of three heavy metals(Cd, Cu and Zn) soil pH appeared to be near 6.0 regardless of properties of the 8 soils, and adsorption gradually decreased above and below pH 6.0. This phenomenon was the same in both heavy metal solutions and mixed solutions, and the mixed solution, containing three heavy metals, revealed slightly higher amounts of Cu adsorption and Cd adsorption. 2. It was also found that the adsorption of Cu and Zn by soils was positively correlated with C.E.C. and the organic matter of soils, respectively. However, the pH values showing maxima of heavy metal adsorption were negatively correlated with organic matter content by contrast with the correlation between the maxima and the C.E.C. values in soils. 3. The adsorption of Cu by soils markedly increased more with $Ca(OH)_2$ application than with NaOH application for soil pH adjusment. This was probably because of Ca effects in Cu precipitation in soils, in addition to the effect of the simple soil pH itself on Cu adsorption 4. It was also revealed that adsorbed Cu was hardly desorbed by $N-NH_4OAC$ solution from the Daejeong soil series compared to the Jeonbug and Yechun soil series. This was because the Daejeong soil series consisted of large amounts of expanding type Vermiculite minerals and also was high in C.E.C. and soil organic matter.

  • PDF

The Characteristics of pH Variations and Lead transport during Electrokinetic Remediation of soil Contaminated by Heavy Metal (중금속 오염토의 Electrokinetic 정화 처리시 pH 발현과 납 제거의 전극 간 특성)

  • 한상재;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2001
  • In this study, the characteristics of pH variations and contaminant distribution in soil are investigated during electrokinetic treatment for the purpose of restoring contaminated soil with heavy metal. For these objects, laboratory test for the kaolin contaminated by lead was performed. During electrokinetic treatment, lead was transported from anode to cathode. And 75% of lead removed within 80% region of the specimen. Most lead, however, that transported from anode to cathode precipitated in the vicinity of cathode compartment, thus the amount of lead removed by electroosmosis was little. Electrokinetic treatment satisfied regulation criteria of Korean Soil Environment Conservation Law within almost region of the specimen. But enhancement methods can be regarded as inevitable requisite for the cathode region.

  • PDF

Removal of Arsenic in Waste Water using Pachymeniopsis sp. and Its Application to Soil Washing Process (Pachymeniopsis sp.의 폐수 내 가용성 비소 제거 가능성 평가 및 토양세척공법에의 적용)

  • Jung, Hyun-Gyu;Kim, Yu-Beom;Choi, Sang-Il;Kim, Sun-Gu;Kim, Hee-Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • In this report, we provide experimental evidence that heavy metal ions could be removed using Pachymeniopsis sp., particularly soluble arsenic in leachate from soil contaminated by arsenic. We performed pilot scale of soil washing process based on our results. The adsorption of arsenic by Pachymeniopsis sp. indicated that it could be described with the Langmuir Model and the maximum adsorption capacity increased with decreasing pH (pH 3: 102.48 mg/g, pH 5: 98.32 mg/g, pH 7: 57.70 mg/g, pH 9: 43.34 mg/g) and increasing temperature (10$^{\circ}C$ : 60.38 mg/g, 20$^{\circ}C$ : 76.39 mg/g, 30$^{\circ}C$ : 112.12 mg/g). Our results revealed that soluble arsenic in leachate was removed from 24.03 mg/L to 0.6 ${\pm}$ 0.1 mg/L by Pachymeniopsis sp. for 48hours on pilot scale of soil washing process.

Comparison of the Surface Chemical Properties of Plastic Film House, Upland, and Orchard Soils in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Chan-Yong;Seo, Young-Jin;Kwon, Oh-Heun;Won, Jong-Gun;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2016
  • The objectives of this study were to evaluate the soil fertility about plastic film house, upland, and orchard in Gyeongbuk Province, Korea. The surface chemical properties of soil samples were investigated every 4 year from 2000 year at upland, 2001 year at orchard, and 2002 year at plastic film house. During 12 year's monitoring, mean soil pH was increased by 0.7 and 0.8 pH unit from pH 5.7 in upland and orchard, respectively, 0.5 pH unit from pH 6.5 in plastic film house. About 50% of all the field samples occupied within the recommended pH range (pH 6-7). Although soil organic matter (SOM) was gradually increased by about $10g\;kg^{-1}$ for 12 years, 40% of orchard, 49% of plastic film house, and 77% of upland soil samples were still below the 3% SOM. The mean concentration of available phosphate for 12 years in upland, orchard, and plastic film house were 530, 600, and $760mg\;kg^{-1}$, respectively. The relative frequencies exceeding the recommended available phosphate range ($300-550mg\;kg^{-1}$) were 43%, 53%, and 66% at upland, orchard, and plastic film house soils, respectively. $NH_4OAc$ exchangeable $K^+$ of upland, orchard, and plastic film house in the last soil test were 0.8, 0.9, and $1.6cmol_c\;kg^{-1}$, respectively. The relative frequencies above the recommended K level were 56% and 70% of orchard and plastic film house soil samples, respectively. The levels of crop nutrients except exchangeable Ca and Mg in upland soil were tended to increase gradually in the three fields. Exchangeable Mg, EC, available phosphate, organic matter and soil pH could be used as principle components to differentiate the chemical properties of three land fields. This analysis revealed that the soil fertility was affected by cropping method and field management, although additional research is needed to assess the importance of management on soil chemical properties and many fields indicate an opportunity for improvement in fertilizer management.

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

Chemical properties of soybean-cultivated field soils (대두재배 농가포장 토양의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Hee-Myeong;Lee, Sang-Ho;Kim, Chan-Sub
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.275-280
    • /
    • 1990
  • In order to obtain the basic informations on the reasonable fertilization and soil management systems for a high soybean yield, both soybean leaves and soils were collected from 24 soybean-cultivated fields in central area of Korea, and analyzed. For this study, soybean leaves and soil were sampled together in July of 1988(growing season), and soil alone in October of 1988 (harvesting season) and April of 1989(sowing season) at each sampling site. The results might be summarized as follows: 1. The soil pH ranged between 4.8 and 6.8. and the pH after harvest decreased to 5.4 which compared with the pH 5.7 of growing season. 2. Both the 1N KCl extractable Al and the 1N $NH_4OAc$ extractable Al in soils were inversely correlated with the soil pH. the former concentration was negligible above pH 5.8. 3. The soil total-N and Bray 1-P after harvest were lower than those of growing season. The Bray 1-P's of sample soils were very high irrespective of sampling time. 4. The exchangeable Ca and Mg in soils even after harvest varied little whereas the exchangeable K decreased with time. 5. The N content in soybean leaves was not correlated with soil total-N, but highly correlated with the K content in soybean leaves. The Mg content in soybean leaves was also highly correlated with Ca content in suybean leaves and exchangeable Mg in soils.

  • PDF

Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH

  • Tan, Hao;Wu, Xiang;Xie, Liyuan;Huang, Zhongqian;Gan, Bingcheng;Peng, Weihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.930-935
    • /
    • 2015
  • A phytase gene was identified in a publicly available metagenome derived from subsurface groundwater, which was deduced to encode for a protein of the histidine acid phosphatase (HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 µmol P/min/mg, at the pH optimum of 2.0 with the temperature of 37℃. Interestingly, the pH optimum of this phytase is much lower in comparison with most HAP phytases known to date. It suggests that the phytase could possess improved adaptability to the low pH condition caused by the gastric acid in livestock and poultry stomachs.

Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment (안정화 처리된 비소오염토양의 용출특성)

  • Yu, Chan;Park, Jin-Chul;Yoon, Sung-Wook;Baek, Seungh-Wan;Lee, Jung-Hun;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

The Effect of Dredged Soil Improvement on Soil Chemical Conditions and Plant Growth at the Slope of Saemangeum Sea Dike

  • Park, Chanwoo;Koo, Namin;Kwon, Jino;Lim, Joo-Hoon;Jeong, Yong-Ho;Kim, Jung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • This study was conducted to determine the changes in soil chemical properties and the growth of seedling according to the different dredged soil improving methods at slope of Saemangeum sea dike. Undersea dredged soil was improved by five different methods. Seedlings of Ulmus davidiana var. japonica, Chionanthus retusa, Celtis sinensis, and Pinus thunbergii were planted after 9 month of experience site installation, then soil pH, NaCl concentration in soil, soil organic matter (SOM), and survival rate and height of seedling was measured. Initial soil pH was highest in the control plot but it decreased to the similar level with other soil improving plots after 35 months. There were no differences in NaCl concentration between the control and soil improving plots, and it showed decreasing tendency during the study period. In the control plot, initial SOM was lowest among that of other plots during the study period. The survival rate of 36 months after planting of P. thunbergii was highest among the species. The gap of the tree growth of P. thunbergii between the control plot and the soil improving plots was small, however, other species showed relatively higher tree height in the soil improving plots than the control plots. Creation forest with P. thunbergii might be a cost effective afforestation in coastal reclaimed land since it rarely needs additional improvement of dredged soil.

Rice Seedling Establishment for Machine Transplanting I. Effects of Seed Bed Soils and Soil pH on the physiological Disorders of Seedlings and Their Control (수도기계이앙 육묘에 관한 연구 I보. 상토의 종류 및 pH가 묘의 생리 장해에 미치는 영향)

  • Yong-Dea Yun;Hyun-Ok Choi;Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.27-31
    • /
    • 1977
  • Experiments were conducted to investigate the effects of seed bed soils and soil pH on the rice growth and control of seedling rots. A 2:1 ratio mixture of clay loam and compost resulted in the best seedling growth and quality among the soils used. At soil pH between 4 and 5. no seedling rots occurred and plant growth was normal. At soil pH above 6, seedling rots occurred and characteristics of seedings was poor. Tachiga ren application before seeding or immediately after seeding reduced seedling rots significantly at the high soil pH.

  • PDF