Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11012

Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH  

Tan, Hao (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Wu, Xiang (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Xie, Liyuan (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Huang, Zhongqian (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Gan, Bingcheng (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Peng, Weihong (Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 930-935 More about this Journal
Abstract
A phytase gene was identified in a publicly available metagenome derived from subsurface groundwater, which was deduced to encode for a protein of the histidine acid phosphatase (HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 µmol P/min/mg, at the pH optimum of 2.0 with the temperature of 37℃. Interestingly, the pH optimum of this phytase is much lower in comparison with most HAP phytases known to date. It suggests that the phytase could possess improved adaptability to the low pH condition caused by the gastric acid in livestock and poultry stomachs.
Keywords
Phytic acid; phytase; metagenome; pH optimum; acidophilic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Olukosi OA, Dono ND. 2014. Modification of digesta pH and intestinal morphology with the use of benzoic acid or phytobiotics and the effects on broiler chicken growth performance and energy and nutrient utilization. J. Anim. Sci. 92: 3945-3953.   DOI   ScienceOn
2 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI   ScienceOn
3 Qadis AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Sato S. 2014. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J. Vet. Med. Sci. 76: 877-885.   DOI   ScienceOn
4 Reddy NR, Sathe SK, Salunkhe DK. 1982. Phytates in legumes and cereals.Adv. Food Res. 28: 1-92.   DOI
5 Kostrewa D, Wyss M, D’Arcy A, Van Loon APGM. 1999. Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. J. Mol. Biol. 288: 965-974.   DOI   ScienceOn
6 Golovan S, Wang G, Zhang J, Forsberg CW. 2000. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46: 59-71.   DOI   ScienceOn
7 Greiner R, da Silva LG, Couri S. 2009. Purification and characterization of an extracellular phytase from Aspergillus niger 11T53A9. Braz. J. Microbiol. 40: 795-807.   DOI
8 Hanson BT, Yagi JM, Jeon CO, Madsen EM. 2012. Role of nitrogen fixation in the autecology of Polaromonas naphthalenivorans in contaminated sediments. Environ. Microbiol. 14: 1544-1557.   DOI   ScienceOn
9 Lei X-G, Porres JM. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794.   DOI   ScienceOn
10 Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.   DOI
11 Liao Y, Li C-M, Chen H, Wu Q, Shan Z, Han X-Y. 2013. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase m utated by I44E and T252R. Appl. Biochem. Biotechnol. 171: 900-915.   DOI   ScienceOn
12 Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36: D534-D538.   DOI   ScienceOn
13 Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.   DOI   ScienceOn
14 Ding Q, Yang P, Huang H, Wang Y, Yao B. 2010. Development status and research trends of phytases. J. Agric. Sci. Technol. 12: 27-33.
15 Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD, Jay JJ, et al. 2009. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PLoS One 4: e7041.   DOI   ScienceOn
16 Bilik K, Strzetelski J, Furgal-Dierzuk I, Sliwinski B. 2014. Effect of supplementing TMR diets with artificial saliva and acid buf on optimizing ruminal pH and fermentation activity in cows. Ann. Anim. Sci. 14: 585-593.   DOI
17 Böhm K, Herter T, Müller JJ, Borriss R, Heinemann U. 2010. Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. FEBS J. 277: 1284-1296.   DOI   ScienceOn
18 Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, et al. 2009. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol. Bioeng. 103: 857-864.   DOI   ScienceOn
19 Dono ND, Sparks NH, Olukosi OA. 2014. Association between digesta pH, body weight, and nutrient utilization in chickens of different body weights and at different ages. J. Poult. Sci. 51: 180-184.
20 Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971.   DOI   ScienceOn
21 Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.   DOI   ScienceOn
22 Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 101: 4125-4134.   DOI   ScienceOn
23 Ullah AH, Cummins BJ. 1987. Purification, N-terminal amino acid sequence and characterization of the pH 2.5 optimum acid phosphatase (E.C. 3.1.3.2) from Aspergillus ficuum. Prep. Biochem. 17: 397-422.
24 Shivange AV, Dennig A, Schwaneberg U. 2014. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J. Biotechnol. 170: 68-72.   DOI   ScienceOn
25 Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.   DOI
26 Mukhametzyanova AD, Akhmetova AI, Sharipova MR. 2012. Microorganisms as phytase producers. Microbiology 81: 267-275.   DOI
27 Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, et al. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446-4451.
28 Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. 2013. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol. Lett. 35: 1669-1676.   DOI   ScienceOn
29 Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. 2012. Phytases: crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol. 112: 1-14.   DOI   ScienceOn
30 Moesseler A, Kottendorf S, Liesner VG, Kamphues J. 2010. Impact of diets’ physical form (particle size; meal/pelleted) on the stomach content (dry matter content, pH, chloride concentration) of pigs. Livestock Sci. 134: 146-148.   DOI   ScienceOn
31 Moesseler A, Wintermann M, Sander SJ, Kamphues J. 2012. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers. J. Anim. Sci. 90: 343-345.   DOI   ScienceOn
32 Mohammed R, Hunerberg M, McAllister TA, Beauchemin KA. 2014. Characterization of ruminal temperature and its relationship with ruminal pH in beef heifers fed growing and finishing diets. J. Anim. Sci. 92: 4650-4660.   DOI   ScienceOn
33 Mullaney EJ, Ullah AH. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312: 179-184.   DOI   ScienceOn
34 Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, et al. 2002. Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68: 1907-1913.   DOI