• Title/Summary/Keyword: soil on the waste reclaimed land

Search Result 8, Processing Time 0.026 seconds

폐기물 매립지 토양에서의 PCBs 분석법

  • Lee Jeong-Hwa;Jeon Chi-Wan;Jeong Yeong-Uk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.199-201
    • /
    • 2005
  • This paper describes a simple procedure for the quantitative analysis of 7 PCBs (polychlorinated biphenyls) in soils on the waste reclaimed land, The procedure involved sample clean up using silicagel column, acetonitrile partition and sulfuric acid procedures. The instrumental technique is applied GC/PDD(gas chromatography/pulsed discharge detector) and GC/ECD(gas chromatography/electron capture detector). Concentration of $sub-{\mu}g/g$ level was attainable with 20g soils on the waste reclaimed land.

  • PDF

Effect of Capillary Barrier on Soil Salinity and Corn Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Lee, Su-Hwan;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yul;Noh, Tae-Hwan;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.398-405
    • /
    • 2014
  • Salt accumulation at soil surface is one of the most detrimental factors for crop production in reclaimed tidal land. This study was conducted to investigate the effect of capillary barriers beneath the soil surface on dynamics of soil salts at coarse-textured reclaimed tidal land. A field experiment was conducted at Saemangeum reclaimed tidal land for two years (2012-2013). Capillary barriers ($3.5{\times}12m$) were treated with crushed-stone, oyster shell waste, coal briquette ash, coal bottom ash, rice hull and woodchip at 40-60 cm depth from soil surface. Silage corn (Zea mays) was cultivated during the experimental period and soil salinity was monitored periodically. Soil salinity was significantly reduced with capillary barrier compared to that of control. Oyster shell waste was one of the most effective capillary barrier materials to control soil salinity at Saemangeum reclaimed tidal land. At the first growing season capillary barrier did not influence on corn growth regardless of types of the material, but plant biomass and withering rate of corn were significantly improved with capillary barrier at the second growing season. The results of this study showed that capillary barrier was effective on the control of soil salinity and improvement of corn growth, which indicated that capillary barrier treatment can be considered one of the best management practices for stable crop production at Saemangeum reclaimed tidal land.

The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land (에너지작물 재배를 위한 간척지 토양의 토양복토재로써 하수슬러지 고화물의 이용효과)

  • An, Gi-Hong;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Yoon, Yong-Mi;Park, Kwang-Guen;Kim, Jang-Taeck
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.238-247
    • /
    • 2012
  • To determine the possibility of solidified se wage sludge for use as a soil cover material in reclaimed land, the growth of energy crops and soil chemical properties investigated in each experimental plots during 2 years (2010 and 2011). The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). Plant height, measured in the second year (2011), was highest in the Geodae 1 grown at plots treated with solidified sewage sludge. The growth of energy crops cultivated in both SS50 and SS100 were better than in ORL. The contents of organic matter (OM) and total nitrogen (T-N) at both SS50 and SS100 were considerably higher than that of the ORL over 2 years. However, the soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100 over 2 years. We consider that soil chemical and physical properties on reclaimed land used in this study could be improved by the application of solidified sewage sludge due to following reasons. Firstly, the application of solidified sewage sludge may provide soil nutrients on reclaimed land i.e. the growth of energy crops better than in ORL, resulted in more OM and T-N contents in SS50 and SS100. Secondly, the top layers mixed or covered with solidified sewage sludge on reclaimed land may be prevented the salinity accumulation due to capillary rise to surface soil, and improved the cultivation layer for effectively propagating the rhizomes of energy crops. Thus the solidified sewage sludge may be a great soil cover materials for cultivation of bioenergy crops in reclaimed land.

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

Slope Stability of Waste Landfill Using Textured Geomembrane (Textured 지오맴브레인을 적용한 폐기물 매립장의 사면 안정성 연구)

  • 신은철;윤석호;심진섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.141-144
    • /
    • 2000
  • The slope stability of waste landfill has been a problem in domestic and foreign countries. Waste landfills are being constructed in a reclaimed land or mountainous area. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetic liners in there. The large size direct shear test(30cm x 30cm) equipment was used to determine the interface friction angles between CCLs and soil & geomembranes. The centrifuge model tests were performed to investigate the slope stability with considering various geosynthetic liners conditions and degree of slope. The results of centrifuge model test indicate that the degree of saturation of GCL, roughness of geomembrane, and slope of landfill have greatly influenced on the slope stability of solid waste landfill.

  • PDF

Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land (간척지토양에서 하수슬러지 고화물 처리가 에너지작물의 생육에 미치는 영향)

  • An, Gi-Hong;Lee, Sun-Il;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Kim, Byung-Chul;Kim, Sang-Pyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • This study was carried out to obtain the basic data for selecting the cultivatable bioenergy crops through application of solidified sewage sludge in reclaimed lands. The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). The growth of energy crops (Geodae-Uksae 1, Miscanthus sacchariflorus, and Phragmites australis) were investigated from May to October, 2010 in each experimental plot. The soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100. Soil properties on reclaimed land used in this study must be improved by increasing the buffering capacity of saline with the treatment of solidified sewage sludge due to the fact that the contents of organic matter (OM) in both of SS50 and SS100 were higher than that of the ORL. Thus the growth of energy crops cultivated in the solidified sewage sludge plots were better than in ORL. Geodae-Uksae 1 which showed an excellent adaptability on reclaimed land treated with the solidified sewage sludge has considerably higher biomass than those of other energy crops (M. sacchariflorus and P. australis). This study suggested that Geodae-Uksae 1 is the most suitable biomass feedstock crop for bioenergy productions, and the solidified sewage sludge may be possible to utilize as a soil cover materials for cultivation of bioenergy crops in reclaimed land.

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF

Bearing Capacity and Settlement of Reclaimed Land by Utilizing Waste Lime (폐석회를 활용한 성토매립지반의 지지력 및 침하특성에 관한 연구)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.175-184
    • /
    • 1999
  • Several major land reclamation projects such as the Inchon International Airport construction, Songdo New City construction, LNG Tank and LPG storage construction are underway along the coastal line of Inchon in Korea. This study was carried out to investigate the feasible use of waste lime in the land reclamation projects. Waste lime (hydrated lime) used in this study is produced as a by-product in the manufacturing process of $Na_2CO_3$ from local chemical factory in Inchon. This study presents the characteristics of bearing capacity and settlement on the ground formed by layers of waste lime and dredged soil. From the laboratory and in-situ plate load test, the ultimate bearing capacity by in-situ test was 1.25~1.37 times higher than that of the theoretical ultimate bearing capacity. Based on the settlement analysis by Magset- II, the total settlement of layered ground steadly increased up to the ratio of waste lime depth 0.2 and therefore rapidly increased with the increase of waste lime depth. The results of the present study indicate that the ratio of waste lime depth for reclamation work is about 0.2.

  • PDF