• 제목/요약/키워드: soil nitrate

검색결과 602건 처리시간 0.021초

요소+칼리에 대비(對備)한 질산암모늄+칼리가 배추의 수량(數量) 및 무기성분함량(無機成分含量)에 미치는 영향(影響) (Effect of Ammonium Nitrate Plus Potash in Comparison with Urea Plus Potash on the Yield and Content of Some Mineral Nutrient Elements of Chinese Cabbage)

  • 오왕근;김성배
    • 한국토양비료학회지
    • /
    • 제18권4호
    • /
    • pp.407-412
    • /
    • 1985
  • 질소의 비종에 따른 배추 ('84 가을 삼미가락, '85 봄, 여름배추)에 대한 칼리비료의 효과를 폿트에서 재배 시험한 결과는 다음과 같다. 1. 질산암모늄은 요소보다 배추의 생육량을 늘였는데 그 증수효과는 봄보다 가을에 컸다. 2. 배추의 수량은 1차(5월 17일) 및 2차 솎음 (6월 9일) 배추의 K함량 (건물) 및 1 차 솎음 배추의 $NO_3-N$함량 (건물), 수확한 배추의 외엽의 K/Ca+Mg me 당량비와는 정상관 관계를, 동외엽의 마그네슘 함량과는 부상관관계를 갖었다. 3. 1차 솎음, 2차 솎음, 수확기의 건조배추 (내엽)에 함유되는 K와 $NO_3-N$간에는 각각 $r;0.9998^{**}$, r; 0.4439, $-0.7135^*$의 상관관계가 있었다. 또 수확한 배추 속잎의 $NO_3-N$는 K 가 결핍되고, Ca, Mg함량이 낮았던 질안 무칼리구에서 많았다. 4. 배추는 우선 $NO_3-N$가 K의 흡수를 촉진하여 배추의 영양 생장을 늘리고 K가 내엽으로 이동하면서 Ca가 흡수 대치되고, 다음에 Mg가 흡수되어 내엽으로 이동해가는 영양흡수와 생육양상을 갖는 것으로 판단되었다.

  • PDF

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

바이오순환림의 저농도액비 시용에 따른 토양수 및 지하수 수질 영향 분석 (Effect of Low Concentration Liquid Manure application on Soil Water and Groundwater Quality in Bio-Circulation Experimental Forest)

  • 홍은미;최진용;유승환;남원호;여진기;최인규
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.37-45
    • /
    • 2010
  • Manure recycling as fertilizer is one of solutions for the environmental problem related with livestock manure treatment as well as the ocean dumping ban act prohibiting manure disposal to the ocean. For the manure disposal, forest area can be a candidate place because the area has a wide range of applicable sites. However, the manure application to the forest has a possibility of causing environmental impacts including water quality problems due to nutrient loading. Therefore it is necessary to investigate water quality impact from manure disposal to the forestry plantation. In this study, ground and soil water quality had been monitored in the bio-circulation experimental forest where low concentration liquid manure (LCLM) was applied. Soil and groundwater samples were collected and analyzed weekly from April to October in 2008 and 2009. The mean and variation of NO3-N concentration in soil water of LCLM treatment places showed higher concentration than the reference places declining during growing season. In the case of groundwater from monitoring well in the downstream of disposal site, the $NO_3$-N concentration was 3.59 mg/L in 2008 and 3.26 mg/L in 2009 in average showing higher concentration than the reference well although the concentration was not exceed the national drinking water standard. To investigate the source of nitrate, $\delta^{15}N$ isotope analysis was also implemented. Its result showed that the LCLM application could be the nitrate source requiring further long-term monitoring soil and water quality.

목초 생산성과 액상분뇨 시용이 토양의 질소동태와 $NO_3$ 용탈에 미치는 영향 (The Effect of Cattle Slurry on N-Dynamics and $NO_3$ Leaching in Pasture Mixtures)

  • 류종원
    • 한국초지조사료학회지
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 1997
  • The aim of the study is to describe the fate and transformation of nitrogen in grassland ecosystems. Field experiments were conducted using sandyloam soil under variabling conditions: Zen, fertilization, reduced slurry application(l20kg N $ha^{-1}\;yr^{-1}$), usual sluny application (240 kg N $ha^{-1}\;yr^{-1}$).Soil water samples were gathered with 120cm ceramic cups with initial pressure of 0.5 bar. Samples were collected twice a month and analysed for NO, colormetrically. Percolation was calculated as the difference between precipitation and potential evapotranspiration, and leaching as the product of percolation and nitrate content of the water h m the ceramic cups. The N$H_4$-N content in soil had no significant effect on slurry application, but high slurry application on grassland resulted in high N$O_3$-N content in soil. The NO, concentration in soil water was remarkably variable during the year. The average N$O_3$, concentration during experiment became the lowest(8.5 mg/e ) without slurry application and highest with 240kOa cattle sluny(25.3 mg4 ). For each of the three different amounts of cattle sluny applied (0, 120, and 240kOa), the amount of N$O_3$-N leached per year were 12, 23 and 29kg/ha respectively. On grassland under the climatic conditions of Allgau showed enormous nitrate leaching, which has a p a t potential of polluting the ground water. The high pool of mineral N in the soil are the source for N$O_3$ leaching. The leaching of N$O_3$ cannot be avoided completely, but minimized by optimizing N fertilization rate.

  • PDF

Biodegradation of Aromatic Compounds from Soil by Drum Bioreactor System

  • Woo, Seung-Han;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.435-441
    • /
    • 2004
  • A drum bioreactor was used for the treatment of sandy soil contaminated with three kinds of aromatic compounds (phenol, naphthalene, and phenanthrene), and its performance was evaluated in two different operation modes; intermittent and continuous rotation of drum. When the drum bioreactor was operated with one rotation per day, the microbial growth was relatively low, and most of the compounds remaining in soil, except naphthalene of 90 mg/kg dry soil, disappeared mainly due to volatilization. In contrast, when the drum was continuously rotated at 9 rpm (rotation/min), the number of microorganisms was drastically increased and nitrate was consumed for growth as a nitrogen source. Phenol and phenanthrene were removed at rates of 56.7 mg/kg dry soil/day and 3.2 mg/kg dry soil/day, respectively.

질소산화물의 토양배출량 추정과 지구 환경에 미치는 대기화학적 특성 연구 (Characterization of NOx Emission from Soils in Southwest Korea and Their Atmospheric Chemistry)

  • 김득수
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.451-461
    • /
    • 1997
  • The soil NO flux measurements in Korea were made from 17 May 1997 to 16 June 1997 on grass land at Kunsan National University in southwestern Korea by using flow-through chamber technique. The experiment was conducted in an effort to determine the role of natural emissions of NO on rural atmospheric photochemistry, and to understand the soil NO emission mechanism with respect to soil parameters. Soil NO fluxes were measured every minutes and averaged in every 15 minutes as well as soil temperature. Soil samples were analyzed for $NO_3^-, NH_4^+$, and moisture in soil. Soil nitrate was not detected in most times, and total N-containing was limited in site soils. There was a optimum range of soil moisture and temperature for soil NO flux. The overall average of soil NO emission rates were found to be 1.30 $\pm 0.92 ngNm^{-2}s^{-1}$ (n=1219), and ranged from 0.01 ngNm^{-2}s^{-1}$ to 5.62 ngNm^{-2}s^{-1}$. Diurnal variation of soil NO emission was typical, which was in higher level during daytime, and was in lower level over the night. NO flux showed a strong soil temperature dependence $(r^2=0.78)$, but not with soil moisture and soil N-containing during this experimental period; NO fluxes increased exponentially as soil temperature increased. In order to assure the relevant relationship between soil NO flux and the soil parameters, long-term soil flux measurement on different types of land use should be planned and conducted continuously.

  • PDF

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor

  • Lee, Woo-Jin;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.836-844
    • /
    • 2009
  • A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.

상추와 시금치의 품종별 질산태 질소 축적 차이 (Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach)

  • 정종배;이용우;최희열;박용;조문수
    • 한국토양비료학회지
    • /
    • 제38권1호
    • /
    • pp.38-44
    • /
    • 2005
  • 상추와 시금치를 포함한 엽채류의 질산염 축적은 여러 가지 환경요인의 영향을 받지만 품종별로 질산염 축적 정도가 다른 것으로 알려져 있다. 우리나라에서 많이 재배되고 있는 상추와 시금치 각각 10 품종을 perlite와 vermiculite 1:1 혼합 배지에서 양액을 공급하여 재배하고 품종별 생육 상황, 질산염 축적 정도, 유기 및 유기용질 함량을 조사 비교하였다. 질산염 축적이 많은 품종과 적은 품종 사이에 유의성 있는 질산염 함량 차이가 있었으며, 질산염 함량과 생체량 또는 건물량으로 측정된 식물 생장 사이에는 상추와 시금치 모두에서 유의성 있는 부의 상관관계가 있었다. 질산염 축적과 가용성 당, 아미노산 및 유기산을 포함한 유기용질 함량 사이에는 직접적인 상관관계를 찾을 수 없었다. 기존의 일부 연구 결과에서 광합성이 활발한 품종의 경우 유기물 합성량이 많고 따라서 건물량이 증가하며 유기용질이 축적되어 상대적으로 다른 품종에 비하여 질산염 축적이 낮아지는 것으로 알려져 있다. 그러나 본 연구의 결과로 보면 단순히 생육이 빠른 품종에서 질산염 함량이 낮고 반대로 생육이 느린 품종에서 질산염 함량이 높은 것으로 결론 내릴 수 있다. 식물체 중의 질산염 함량은 광합성, 질산염의 환원, 삼투압 조절 작용 등을 포함하여 품종별로 고유한 여러 특성에 따라서 결정되기도 하겠지만 특히 품종별 고유한 생육량에 따른 질소의 적정 공급 여부에 따라서 크게 영향을 받을 것으로 판단된다. 즉 생육에 필요한 수준 이상의 질산염이 공급되면 다른 생리적 작용의 결과와 관계없이 과잉의 질산염은 작물체내에 축적될 수밖에 없을 것이다.

토양중 방선균의 선택적 분리를 위한 배지 (A New Medium for the Selective Isolation of Soil Actinomycetes)

  • 조성화;황철원;정호권;양창술
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.561-563
    • /
    • 1994
  • For the more effective isolation of soil actinomycetes, we have developed HHV (Hair hydrolysate-vitamin) agar medium, containing hair as the sole source of carbon and nitrogen. The HHV agar medium was superior to other media such as colloidal chintin agar, glycerol-arginine agar and starch-casein-nitrate agar, and HV (humic acid-vitamin) agar. The maximum effect of this medium has been shown in hair dry weight 0.4 g/l medium. Of each soil sample, the greatestest number of actinomycetes was isolated from the potato annual planted soil among the tested samp- les. The genus of actinomycetes isolated from the potato annual planted soil sample was identified such 5 group as Stretomyces, Micromonospora, Microbispora, Nocardia and Saccharopolyspora.

  • PDF

토양 온도, 수분, EC 모니터링을 위한 다양한 EC 센서 비교 및 농경지 토양에서 이온 함량과 EC의 상관관계 평가 (Comparison of Various EC Sensors for Monitoring Soil Temperature, Water Content, and EC, and Its Relation to Ion Contents in Agricultural Soils)

  • 박진희;성좌경
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.157-164
    • /
    • 2021
  • Smart agriculture requires sensing systems which are fundamental for precision agriculture. Adequate and appropriate water and nutrient supply not only improves crop productivity but also benefit to environment. However, there is no available soil sensor to continuously monitor nutrient status in soil. Electrical conductivity (EC) of soil is affected by ion contents in soil and can be used to evaluate nutrient contents in soil. Comparison of various commercial EC sensors showed similar water content and EC values at water content less than 20%. Soil EC values measured by sensors decreased with decreasing soil water content and linearly correlated with soil water content. EC values measured by soil sensor were highly correlated with water soluble nutrient contents such as Ca, K, Mg and N in soil indicating that the soil EC sensor can be used for monitoring changes in plant available nutrients in soil.