Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach

상추와 시금치의 품종별 질산태 질소 축적 차이

  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University) ;
  • Lee, Yong-Woo (Division of Life and Environmental Science, Daegu University) ;
  • Choi, Hee-Youl (Division of Life and Environmental Science, Daegu University) ;
  • Park, Yong (Division of Horticulture and Landscape Architecture, Daegu University) ;
  • Cho, Moon-Soo (Division of Horticulture and Landscape Architecture, Daegu University)
  • 정종배 (대구대학교 생명환경학부) ;
  • 이용우 (대구대학교 생명환경학부) ;
  • 최희열 (대구대학교 생명환경학부) ;
  • 박용 (대구대학교 원예조경학부) ;
  • 조문수 (대구대학교 원예조경학부)
  • Received : 2005.01.04
  • Accepted : 2005.01.20
  • Published : 2005.02.28

Abstract

In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

상추와 시금치를 포함한 엽채류의 질산염 축적은 여러 가지 환경요인의 영향을 받지만 품종별로 질산염 축적 정도가 다른 것으로 알려져 있다. 우리나라에서 많이 재배되고 있는 상추와 시금치 각각 10 품종을 perlite와 vermiculite 1:1 혼합 배지에서 양액을 공급하여 재배하고 품종별 생육 상황, 질산염 축적 정도, 유기 및 유기용질 함량을 조사 비교하였다. 질산염 축적이 많은 품종과 적은 품종 사이에 유의성 있는 질산염 함량 차이가 있었으며, 질산염 함량과 생체량 또는 건물량으로 측정된 식물 생장 사이에는 상추와 시금치 모두에서 유의성 있는 부의 상관관계가 있었다. 질산염 축적과 가용성 당, 아미노산 및 유기산을 포함한 유기용질 함량 사이에는 직접적인 상관관계를 찾을 수 없었다. 기존의 일부 연구 결과에서 광합성이 활발한 품종의 경우 유기물 합성량이 많고 따라서 건물량이 증가하며 유기용질이 축적되어 상대적으로 다른 품종에 비하여 질산염 축적이 낮아지는 것으로 알려져 있다. 그러나 본 연구의 결과로 보면 단순히 생육이 빠른 품종에서 질산염 함량이 낮고 반대로 생육이 느린 품종에서 질산염 함량이 높은 것으로 결론 내릴 수 있다. 식물체 중의 질산염 함량은 광합성, 질산염의 환원, 삼투압 조절 작용 등을 포함하여 품종별로 고유한 여러 특성에 따라서 결정되기도 하겠지만 특히 품종별 고유한 생육량에 따른 질소의 적정 공급 여부에 따라서 크게 영향을 받을 것으로 판단된다. 즉 생육에 필요한 수준 이상의 질산염이 공급되면 다른 생리적 작용의 결과와 관계없이 과잉의 질산염은 작물체내에 축적될 수밖에 없을 것이다.

Keywords

References

  1. Aslam, M., and R. C. Huffaker. 1984. Dependency of nitrate reduction on soluble carbohydrates in primary leaves of barley under aerobic conditions. Plant Physiol. 75:623-628 https://doi.org/10.1104/pp.75.3.623
  2. Blom-Zandstra, M., and J. E. M. Lampe. 1985. The role of nitrate in the osmoregUlation of lettuce (Lacfuca sativa L.) grown at different light intensities. J. Exp. Bot. 36:1043-1052 https://doi.org/10.1093/jxb/36.7.1043
  3. Blom-Zandstra, M., and A. H. Eenink. 1986. Nitrate concentration and reduction in different genotypes of lettuce. J. Anter. Soc. Hort. Sci. 111 :908-911
  4. Blom-Zandstra, M., J. E. M. Lampe, and F. H. M. Ammerlaan. 1988. C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing the light intensity. Physiol. Plant. 74:147-153 https://doi.org/10.1111/j.1399-3054.1988.tb04955.x
  5. Brown, J. R., and G. E. Smith. 1966. Soil fertilization and nitrate accumulation in vegetables. Agron. J. 58:209-212 https://doi.org/10.2134/agronj1966.00021962005800020028x
  6. Bruning-Fann, C. S., and J. B. Kaneene. 1993. The effects of nitrate, nitrite and N-nitroso compounds on human health: A review. Vet. Hum. Toxicol. 35:521-538
  7. Commission of the European Communities Scientific Committee for Food. 1992. Report of the Scientific Committee for Food on Nitrate and Nitrite. 26th Series. EC, Brussels, Belgium
  8. Demsar, J., J. Osvald, and D. Vodnik. 2004. The effect of light-dependent application of nitrate on the growth of aeroponically grown lettuce (Lactuca sativa L.). J. Amer. Soc. Hort. Sci. 129:570-575
  9. European Commission. 1997. Council regulation 194/97 of 31 January 1997. Official Journal of the European Communities. L 31:48-50
  10. Goodman, P. J. 1979. Genetic control of inorganic nitrogen assimilation of crop plants. p. 165-176. In E. J. Hewitt and C. V. Cutting (ed.) Nitrogen assimilation of plants. Academic Press, New York, NY, USA
  11. Jin, S. J., H. J. Cho, and J. B. Chung. 2002. Water stress enhances nitrate accumulation in lettuce at low light intensity. Agric. Chem. Biotechnol. 45: 191-195
  12. Maynard, D. N., A. V. Barker, P. L. Minotti, and N. H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28:71-118 https://doi.org/10.1016/S0065-2113(08)60553-2
  13. Miyajaki, A. 1977. Nitrate problems in food. Stud. Food Hyg. 27:45-58
  14. Mott, R. L.. and F. C. Steward. 1972. Solute accumulation in plant cells. I. Reciprocal relations between electrolytes and nonelectrolytes. Ann. Bot. 36:621-39 https://doi.org/10.1093/oxfordjournals.aob.a084620
  15. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153:375-380
  16. Ohshima, B. (1981) Quantitative estimation of endogenous nitroation in human by monitoring N-nitrosoprolin excreted in the urine. Cancer Res. 41 :3658-3662
  17. Reinink, K., and R. Groenwold. 1987. The inheritance of nitrate content in lettuce (Lactuca saliva L.). Euphytica 36:733-744 https://doi.org/10.1007/BF00051856
  18. Reinink, K., R. Groenwold, and A. Bootsma. 1987. Genotypical differences in nitrate content in Lactuca saliva L. and related species and correlation with dry matter content. Euphytica 36: 11-18 https://doi.org/10.1007/BF00730642
  19. Reinink, K., and A. H. Eenink. 1988. Genotypical differences in nitrate accumulation in shoots and roots of lettuce. Sci. Hortic. 37: 13-24 https://doi.org/10.1016/0304-4238(88)90147-1
  20. Reinink, K.. and M. Blom-Zandstra. 1989. The relation between cell size, ploidy level and nitrate concentration in lettuce. Physiol. Plant. 76:575-580 https://doi.org/10.1111/j.1399-3054.1989.tb05481.x
  21. Santamaria, P., A. Elia, F. Serio, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 79: 1882-1888 https://doi.org/10.1002/(SICI)1097-0010(199910)79:13<1882::AID-JSFA450>3.0.CO;2-D
  22. Sohn, S. M., D. H. Han, and Y. H. Kim. 1996. Chemical characteristics of soils cultivated by the conventional farming, greenhouse cultivation and organic farming and accumulation of $NO_3^-$ in Chinese cabbage and lettuce, Korean J. Organic Agric. 5:149-165
  23. Steingrover, E., R. Oosterhuis, and F. Wieringa. 1982. Effect of light treatment and nutrition on nitrate accumulation in spinach (Spitnacea oleracea L.). Z. Pflanzenphysiol. 107:97-102 https://doi.org/10.1016/S0044-328X(82)80095-0
  24. Systat Software, Inc. 2004. SigmaStat Ver. 3.1. Systat Software, Inc., Point Richmond, CA, USA
  25. van Holsteijn, H. M. C. 1980. Growth of lettuce. II. Quantitative analysis of growth, Meded. Landbouwhogeschool Wageningen 80:1-24
  26. Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 7:718-768
  27. Wolff, I. A., and A. E. Wasserman. 1972. Nitrate, nitrite, and nitrosoamines. Science 177: 15-19 https://doi.org/10.1126/science.177.4043.15
  28. Yemm, E. W., and E. C. Cocking. 1954. The determination of amino acids with ninhydrin. Analyst 80:209-213
  29. Ysart, G., P, Miller, G. Barrett, D. Farrington, P. Lawrances, and N. Harrison, 1999. Dietary exposures to nitrate in the UK. Food Addit. Contam, 16:521-532 https://doi.org/10.1080/026520399283669